123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/inner_product_computer.h"
- #include <memory>
- #include <numeric>
- #include <random>
- #include "Eigen/SparseCore"
- #include "ceres/block_sparse_matrix.h"
- #include "ceres/internal/eigen.h"
- #include "ceres/triplet_sparse_matrix.h"
- #include "glog/logging.h"
- #include "gtest/gtest.h"
- namespace ceres {
- namespace internal {
- #define COMPUTE_AND_COMPARE \
- { \
- inner_product_computer->Compute(); \
- CompressedRowSparseMatrix* actual_product_crsm = \
- inner_product_computer->mutable_result(); \
- Matrix actual_inner_product = \
- Eigen::Map<Eigen::SparseMatrix<double, Eigen::ColMajor>>( \
- actual_product_crsm->num_rows(), \
- actual_product_crsm->num_rows(), \
- actual_product_crsm->num_nonzeros(), \
- actual_product_crsm->mutable_rows(), \
- actual_product_crsm->mutable_cols(), \
- actual_product_crsm->mutable_values()); \
- EXPECT_EQ(actual_inner_product.rows(), actual_inner_product.cols()); \
- EXPECT_EQ(expected_inner_product.rows(), expected_inner_product.cols()); \
- EXPECT_EQ(actual_inner_product.rows(), expected_inner_product.rows()); \
- Matrix expected_t, actual_t; \
- if (actual_product_crsm->storage_type() == \
- CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR) { \
- expected_t = expected_inner_product.triangularView<Eigen::Upper>(); \
- actual_t = actual_inner_product.triangularView<Eigen::Upper>(); \
- } else { \
- expected_t = expected_inner_product.triangularView<Eigen::Lower>(); \
- actual_t = actual_inner_product.triangularView<Eigen::Lower>(); \
- } \
- EXPECT_LE((expected_t - actual_t).norm(), \
- 100 * std::numeric_limits<double>::epsilon() * actual_t.norm()) \
- << "expected: \n" \
- << expected_t << "\nactual: \n" \
- << actual_t; \
- }
- TEST(InnerProductComputer, NormalOperation) {
- const int kMaxNumRowBlocks = 10;
- const int kMaxNumColBlocks = 10;
- const int kNumTrials = 10;
- std::mt19937 prng;
- std::uniform_real_distribution<double> distribution(0.01, 1.0);
- // Create a random matrix, compute its outer product using Eigen and
- // ComputeOuterProduct. Convert both matrices to dense matrices and
- // compare their upper triangular parts.
- for (int num_row_blocks = 1; num_row_blocks < kMaxNumRowBlocks;
- ++num_row_blocks) {
- for (int num_col_blocks = 1; num_col_blocks < kMaxNumColBlocks;
- ++num_col_blocks) {
- for (int trial = 0; trial < kNumTrials; ++trial) {
- BlockSparseMatrix::RandomMatrixOptions options;
- options.num_row_blocks = num_row_blocks;
- options.num_col_blocks = num_col_blocks;
- options.min_row_block_size = 1;
- options.max_row_block_size = 5;
- options.min_col_block_size = 1;
- options.max_col_block_size = 10;
- options.block_density = distribution(prng);
- VLOG(2) << "num row blocks: " << options.num_row_blocks;
- VLOG(2) << "num col blocks: " << options.num_col_blocks;
- VLOG(2) << "min row block size: " << options.min_row_block_size;
- VLOG(2) << "max row block size: " << options.max_row_block_size;
- VLOG(2) << "min col block size: " << options.min_col_block_size;
- VLOG(2) << "max col block size: " << options.max_col_block_size;
- VLOG(2) << "block density: " << options.block_density;
- std::unique_ptr<BlockSparseMatrix> random_matrix(
- BlockSparseMatrix::CreateRandomMatrix(options, prng));
- TripletSparseMatrix tsm(random_matrix->num_rows(),
- random_matrix->num_cols(),
- random_matrix->num_nonzeros());
- random_matrix->ToTripletSparseMatrix(&tsm);
- std::vector<Eigen::Triplet<double>> triplets;
- for (int i = 0; i < tsm.num_nonzeros(); ++i) {
- triplets.emplace_back(tsm.rows()[i], tsm.cols()[i], tsm.values()[i]);
- }
- Eigen::SparseMatrix<double> eigen_random_matrix(
- random_matrix->num_rows(), random_matrix->num_cols());
- eigen_random_matrix.setFromTriplets(triplets.begin(), triplets.end());
- Matrix expected_inner_product =
- eigen_random_matrix.transpose() * eigen_random_matrix;
- std::unique_ptr<InnerProductComputer> inner_product_computer;
- inner_product_computer = InnerProductComputer::Create(
- *random_matrix,
- CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR);
- COMPUTE_AND_COMPARE;
- inner_product_computer = InnerProductComputer::Create(
- *random_matrix,
- CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR);
- COMPUTE_AND_COMPARE;
- }
- }
- }
- }
- TEST(InnerProductComputer, SubMatrix) {
- const int kNumRowBlocks = 10;
- const int kNumColBlocks = 20;
- const int kNumTrials = 5;
- std::mt19937 prng;
- std::uniform_real_distribution<double> distribution(0.01, 1.0);
- // Create a random matrix, compute its outer product using Eigen and
- // ComputeInnerProductComputer. Convert both matrices to dense matrices and
- // compare their upper triangular parts.
- for (int trial = 0; trial < kNumTrials; ++trial) {
- BlockSparseMatrix::RandomMatrixOptions options;
- options.num_row_blocks = kNumRowBlocks;
- options.num_col_blocks = kNumColBlocks;
- options.min_row_block_size = 1;
- options.max_row_block_size = 5;
- options.min_col_block_size = 1;
- options.max_col_block_size = 10;
- options.block_density = distribution(prng);
- VLOG(2) << "num row blocks: " << options.num_row_blocks;
- VLOG(2) << "num col blocks: " << options.num_col_blocks;
- VLOG(2) << "min row block size: " << options.min_row_block_size;
- VLOG(2) << "max row block size: " << options.max_row_block_size;
- VLOG(2) << "min col block size: " << options.min_col_block_size;
- VLOG(2) << "max col block size: " << options.max_col_block_size;
- VLOG(2) << "block density: " << options.block_density;
- std::unique_ptr<BlockSparseMatrix> random_matrix(
- BlockSparseMatrix::CreateRandomMatrix(options, prng));
- const std::vector<CompressedRow>& row_blocks =
- random_matrix->block_structure()->rows;
- const int num_row_blocks = row_blocks.size();
- for (int start_row_block = 0; start_row_block < num_row_blocks - 1;
- ++start_row_block) {
- for (int end_row_block = start_row_block + 1;
- end_row_block < num_row_blocks;
- ++end_row_block) {
- const int start_row = row_blocks[start_row_block].block.position;
- const int end_row = row_blocks[end_row_block].block.position;
- TripletSparseMatrix tsm(random_matrix->num_rows(),
- random_matrix->num_cols(),
- random_matrix->num_nonzeros());
- random_matrix->ToTripletSparseMatrix(&tsm);
- std::vector<Eigen::Triplet<double>> triplets;
- for (int i = 0; i < tsm.num_nonzeros(); ++i) {
- if (tsm.rows()[i] >= start_row && tsm.rows()[i] < end_row) {
- triplets.emplace_back(
- tsm.rows()[i], tsm.cols()[i], tsm.values()[i]);
- }
- }
- Eigen::SparseMatrix<double> eigen_random_matrix(
- random_matrix->num_rows(), random_matrix->num_cols());
- eigen_random_matrix.setFromTriplets(triplets.begin(), triplets.end());
- Matrix expected_inner_product =
- eigen_random_matrix.transpose() * eigen_random_matrix;
- std::unique_ptr<InnerProductComputer> inner_product_computer;
- inner_product_computer = InnerProductComputer::Create(
- *random_matrix,
- start_row_block,
- end_row_block,
- CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR);
- COMPUTE_AND_COMPARE;
- inner_product_computer = InnerProductComputer::Create(
- *random_matrix,
- start_row_block,
- end_row_block,
- CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR);
- COMPUTE_AND_COMPARE;
- }
- }
- }
- }
- #undef COMPUTE_AND_COMPARE
- } // namespace internal
- } // namespace ceres
|