123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/implicit_schur_complement.h"
- #include <cstddef>
- #include <memory>
- #include "Eigen/Dense"
- #include "ceres/block_random_access_dense_matrix.h"
- #include "ceres/block_sparse_matrix.h"
- #include "ceres/casts.h"
- #include "ceres/context_impl.h"
- #include "ceres/internal/eigen.h"
- #include "ceres/linear_least_squares_problems.h"
- #include "ceres/linear_solver.h"
- #include "ceres/schur_eliminator.h"
- #include "ceres/triplet_sparse_matrix.h"
- #include "ceres/types.h"
- #include "glog/logging.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- using testing::AssertionResult;
- const double kEpsilon = 1e-14;
- class ImplicitSchurComplementTest : public ::testing::Test {
- protected:
- void SetUp() final {
- auto problem = CreateLinearLeastSquaresProblemFromId(2);
- CHECK(problem != nullptr);
- A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
- b_ = std::move(problem->b);
- D_ = std::move(problem->D);
- num_cols_ = A_->num_cols();
- num_rows_ = A_->num_rows();
- num_eliminate_blocks_ = problem->num_eliminate_blocks;
- }
- void ReducedLinearSystemAndSolution(double* D,
- Matrix* lhs,
- Vector* rhs,
- Vector* solution) {
- const CompressedRowBlockStructure* bs = A_->block_structure();
- const int num_col_blocks = bs->cols.size();
- auto blocks = Tail(bs->cols, num_col_blocks - num_eliminate_blocks_);
- BlockRandomAccessDenseMatrix blhs(blocks, &context_, 1);
- const int num_schur_rows = blhs.num_rows();
- LinearSolver::Options options;
- options.elimination_groups.push_back(num_eliminate_blocks_);
- options.type = DENSE_SCHUR;
- ContextImpl context;
- options.context = &context;
- std::unique_ptr<SchurEliminatorBase> eliminator =
- SchurEliminatorBase::Create(options);
- CHECK(eliminator != nullptr);
- const bool kFullRankETE = true;
- eliminator->Init(num_eliminate_blocks_, kFullRankETE, bs);
- lhs->resize(num_schur_rows, num_schur_rows);
- rhs->resize(num_schur_rows);
- eliminator->Eliminate(
- BlockSparseMatrixData(*A_), b_.get(), D, &blhs, rhs->data());
- MatrixRef lhs_ref(blhs.mutable_values(), num_schur_rows, num_schur_rows);
- // lhs_ref is an upper triangular matrix. Construct a full version
- // of lhs_ref in lhs by transposing lhs_ref, choosing the strictly
- // lower triangular part of the matrix and adding it to lhs_ref.
- *lhs = lhs_ref;
- lhs->triangularView<Eigen::StrictlyLower>() =
- lhs_ref.triangularView<Eigen::StrictlyUpper>().transpose();
- solution->resize(num_cols_);
- solution->setZero();
- VectorRef schur_solution(solution->data() + num_cols_ - num_schur_rows,
- num_schur_rows);
- schur_solution = lhs->selfadjointView<Eigen::Upper>().llt().solve(*rhs);
- eliminator->BackSubstitute(BlockSparseMatrixData(*A_),
- b_.get(),
- D,
- schur_solution.data(),
- solution->data());
- }
- AssertionResult TestImplicitSchurComplement(double* D) {
- Matrix lhs;
- Vector rhs;
- Vector reference_solution;
- ReducedLinearSystemAndSolution(D, &lhs, &rhs, &reference_solution);
- LinearSolver::Options options;
- options.elimination_groups.push_back(num_eliminate_blocks_);
- options.preconditioner_type = JACOBI;
- ContextImpl context;
- options.context = &context;
- ImplicitSchurComplement isc(options);
- isc.Init(*A_, D, b_.get());
- const int num_f_cols = lhs.cols();
- const int num_e_cols = num_cols_ - num_f_cols;
- Matrix A_dense, E, F, DE, DF;
- A_->ToDenseMatrix(&A_dense);
- E = A_dense.leftCols(A_->num_cols() - num_f_cols);
- F = A_dense.rightCols(num_f_cols);
- if (D) {
- DE = VectorRef(D, num_e_cols).asDiagonal();
- DF = VectorRef(D + num_e_cols, num_f_cols).asDiagonal();
- } else {
- DE = Matrix::Zero(num_e_cols, num_e_cols);
- DF = Matrix::Zero(num_f_cols, num_f_cols);
- }
- // Z = (block_diagonal(F'F))^-1 F'E (E'E)^-1 E'F
- // Here, assuming that block_diagonal(F'F) == diagonal(F'F)
- Matrix Z_reference =
- (F.transpose() * F + DF).diagonal().asDiagonal().inverse() *
- F.transpose() * E * (E.transpose() * E + DE).inverse() * E.transpose() *
- F;
- for (int i = 0; i < num_f_cols; ++i) {
- Vector x(num_f_cols);
- x.setZero();
- x(i) = 1.0;
- Vector y(num_f_cols);
- y = lhs * x;
- Vector z(num_f_cols);
- isc.RightMultiplyAndAccumulate(x.data(), z.data());
- // The i^th column of the implicit schur complement is the same as
- // the explicit schur complement.
- if ((y - z).norm() > kEpsilon) {
- return testing::AssertionFailure()
- << "Explicit and Implicit SchurComplements differ in "
- << "column " << i << ". explicit: " << y.transpose()
- << " implicit: " << z.transpose();
- }
- y.setZero();
- y = Z_reference * x;
- z.setZero();
- isc.InversePowerSeriesOperatorRightMultiplyAccumulate(x.data(), z.data());
- // The i^th column of operator Z stored implicitly is the same as its
- // explicit version.
- if ((y - z).norm() > kEpsilon) {
- return testing::AssertionFailure()
- << "Explicit and Implicit operators used to approximate the "
- "inversion of schur complement via power series expansion "
- "differ in column "
- << i << ". explicit: " << y.transpose()
- << " implicit: " << z.transpose();
- }
- }
- // Compare the rhs of the reduced linear system
- if ((isc.rhs() - rhs).norm() > kEpsilon) {
- return testing::AssertionFailure()
- << "Explicit and Implicit SchurComplements differ in "
- << "rhs. explicit: " << rhs.transpose()
- << " implicit: " << isc.rhs().transpose();
- }
- // Reference solution to the f_block.
- const Vector reference_f_sol =
- lhs.selfadjointView<Eigen::Upper>().llt().solve(rhs);
- // Backsubstituted solution from the implicit schur solver using the
- // reference solution to the f_block.
- Vector sol(num_cols_);
- isc.BackSubstitute(reference_f_sol.data(), sol.data());
- if ((sol - reference_solution).norm() > kEpsilon) {
- return testing::AssertionFailure()
- << "Explicit and Implicit SchurComplements solutions differ. "
- << "explicit: " << reference_solution.transpose()
- << " implicit: " << sol.transpose();
- }
- return testing::AssertionSuccess();
- }
- ContextImpl context_;
- int num_rows_;
- int num_cols_;
- int num_eliminate_blocks_;
- std::unique_ptr<BlockSparseMatrix> A_;
- std::unique_ptr<double[]> b_;
- std::unique_ptr<double[]> D_;
- };
- // Verify that the Schur Complement matrix implied by the
- // ImplicitSchurComplement class matches the one explicitly computed
- // by the SchurComplement solver.
- //
- // We do this with and without regularization to check that the
- // support for the LM diagonal is correct.
- TEST_F(ImplicitSchurComplementTest, SchurMatrixValuesTest) {
- EXPECT_TRUE(TestImplicitSchurComplement(nullptr));
- EXPECT_TRUE(TestImplicitSchurComplement(D_.get()));
- }
- } // namespace ceres::internal
|