123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- //
- // Various algorithms that operate on undirected graphs.
- #ifndef CERES_INTERNAL_GRAPH_ALGORITHMS_H_
- #define CERES_INTERNAL_GRAPH_ALGORITHMS_H_
- #include <algorithm>
- #include <memory>
- #include <unordered_map>
- #include <unordered_set>
- #include <utility>
- #include <vector>
- #include "ceres/graph.h"
- #include "ceres/internal/export.h"
- #include "ceres/wall_time.h"
- #include "glog/logging.h"
- namespace ceres::internal {
- // Compare two vertices of a graph by their degrees, if the degrees
- // are equal then order them by their ids.
- template <typename Vertex>
- class CERES_NO_EXPORT VertexTotalOrdering {
- public:
- explicit VertexTotalOrdering(const Graph<Vertex>& graph) : graph_(graph) {}
- bool operator()(const Vertex& lhs, const Vertex& rhs) const {
- if (graph_.Neighbors(lhs).size() == graph_.Neighbors(rhs).size()) {
- return lhs < rhs;
- }
- return graph_.Neighbors(lhs).size() < graph_.Neighbors(rhs).size();
- }
- private:
- const Graph<Vertex>& graph_;
- };
- template <typename Vertex>
- class VertexDegreeLessThan {
- public:
- explicit VertexDegreeLessThan(const Graph<Vertex>& graph) : graph_(graph) {}
- bool operator()(const Vertex& lhs, const Vertex& rhs) const {
- return graph_.Neighbors(lhs).size() < graph_.Neighbors(rhs).size();
- }
- private:
- const Graph<Vertex>& graph_;
- };
- // Order the vertices of a graph using its (approximately) largest
- // independent set, where an independent set of a graph is a set of
- // vertices that have no edges connecting them. The maximum
- // independent set problem is NP-Hard, but there are effective
- // approximation algorithms available. The implementation here uses a
- // breadth first search that explores the vertices in order of
- // increasing degree. The same idea is used by Saad & Li in "MIQR: A
- // multilevel incomplete QR preconditioner for large sparse
- // least-squares problems", SIMAX, 2007.
- //
- // Given a undirected graph G(V,E), the algorithm is a greedy BFS
- // search where the vertices are explored in increasing order of their
- // degree. The output vector ordering contains elements of S in
- // increasing order of their degree, followed by elements of V - S in
- // increasing order of degree. The return value of the function is the
- // cardinality of S.
- template <typename Vertex>
- int IndependentSetOrdering(const Graph<Vertex>& graph,
- std::vector<Vertex>* ordering) {
- const std::unordered_set<Vertex>& vertices = graph.vertices();
- const int num_vertices = vertices.size();
- CHECK(ordering != nullptr);
- ordering->clear();
- ordering->reserve(num_vertices);
- // Colors for labeling the graph during the BFS.
- const char kWhite = 0;
- const char kGrey = 1;
- const char kBlack = 2;
- // Mark all vertices white.
- std::unordered_map<Vertex, char> vertex_color;
- std::vector<Vertex> vertex_queue;
- for (const Vertex& vertex : vertices) {
- vertex_color[vertex] = kWhite;
- vertex_queue.push_back(vertex);
- }
- std::sort(vertex_queue.begin(),
- vertex_queue.end(),
- VertexTotalOrdering<Vertex>(graph));
- // Iterate over vertex_queue. Pick the first white vertex, add it
- // to the independent set. Mark it black and its neighbors grey.
- for (const Vertex& vertex : vertex_queue) {
- if (vertex_color[vertex] != kWhite) {
- continue;
- }
- ordering->push_back(vertex);
- vertex_color[vertex] = kBlack;
- const std::unordered_set<Vertex>& neighbors = graph.Neighbors(vertex);
- for (const Vertex& neighbor : neighbors) {
- vertex_color[neighbor] = kGrey;
- }
- }
- int independent_set_size = ordering->size();
- // Iterate over the vertices and add all the grey vertices to the
- // ordering. At this stage there should only be black or grey
- // vertices in the graph.
- for (const Vertex& vertex : vertex_queue) {
- DCHECK(vertex_color[vertex] != kWhite);
- if (vertex_color[vertex] != kBlack) {
- ordering->push_back(vertex);
- }
- }
- CHECK_EQ(ordering->size(), num_vertices);
- return independent_set_size;
- }
- // Same as above with one important difference. The ordering parameter
- // is an input/output parameter which carries an initial ordering of
- // the vertices of the graph. The greedy independent set algorithm
- // starts by sorting the vertices in increasing order of their
- // degree. The input ordering is used to stabilize this sort, i.e., if
- // two vertices have the same degree then they are ordered in the same
- // order in which they occur in "ordering".
- //
- // This is useful in eliminating non-determinism from the Schur
- // ordering algorithm over all.
- template <typename Vertex>
- int StableIndependentSetOrdering(const Graph<Vertex>& graph,
- std::vector<Vertex>* ordering) {
- CHECK(ordering != nullptr);
- const std::unordered_set<Vertex>& vertices = graph.vertices();
- const int num_vertices = vertices.size();
- CHECK_EQ(vertices.size(), ordering->size());
- // Colors for labeling the graph during the BFS.
- const char kWhite = 0;
- const char kGrey = 1;
- const char kBlack = 2;
- std::vector<Vertex> vertex_queue(*ordering);
- std::stable_sort(vertex_queue.begin(),
- vertex_queue.end(),
- VertexDegreeLessThan<Vertex>(graph));
- // Mark all vertices white.
- std::unordered_map<Vertex, char> vertex_color;
- for (const Vertex& vertex : vertices) {
- vertex_color[vertex] = kWhite;
- }
- ordering->clear();
- ordering->reserve(num_vertices);
- // Iterate over vertex_queue. Pick the first white vertex, add it
- // to the independent set. Mark it black and its neighbors grey.
- for (int i = 0; i < vertex_queue.size(); ++i) {
- const Vertex& vertex = vertex_queue[i];
- if (vertex_color[vertex] != kWhite) {
- continue;
- }
- ordering->push_back(vertex);
- vertex_color[vertex] = kBlack;
- const std::unordered_set<Vertex>& neighbors = graph.Neighbors(vertex);
- for (const Vertex& neighbor : neighbors) {
- vertex_color[neighbor] = kGrey;
- }
- }
- int independent_set_size = ordering->size();
- // Iterate over the vertices and add all the grey vertices to the
- // ordering. At this stage there should only be black or grey
- // vertices in the graph.
- for (const Vertex& vertex : vertex_queue) {
- DCHECK(vertex_color[vertex] != kWhite);
- if (vertex_color[vertex] != kBlack) {
- ordering->push_back(vertex);
- }
- }
- CHECK_EQ(ordering->size(), num_vertices);
- return independent_set_size;
- }
- // Find the connected component for a vertex implemented using the
- // find and update operation for disjoint-set. Recursively traverse
- // the disjoint set structure till you reach a vertex whose connected
- // component has the same id as the vertex itself. Along the way
- // update the connected components of all the vertices. This updating
- // is what gives this data structure its efficiency.
- template <typename Vertex>
- Vertex FindConnectedComponent(const Vertex& vertex,
- std::unordered_map<Vertex, Vertex>* union_find) {
- auto it = union_find->find(vertex);
- DCHECK(it != union_find->end());
- if (it->second != vertex) {
- it->second = FindConnectedComponent(it->second, union_find);
- }
- return it->second;
- }
- // Compute a degree two constrained Maximum Spanning Tree/forest of
- // the input graph. Caller owns the result.
- //
- // Finding degree 2 spanning tree of a graph is not always
- // possible. For example a star graph, i.e. a graph with n-nodes
- // where one node is connected to the other n-1 nodes does not have
- // a any spanning trees of degree less than n-1.Even if such a tree
- // exists, finding such a tree is NP-Hard.
- // We get around both of these problems by using a greedy, degree
- // constrained variant of Kruskal's algorithm. We start with a graph
- // G_T with the same vertex set V as the input graph G(V,E) but an
- // empty edge set. We then iterate over the edges of G in decreasing
- // order of weight, adding them to G_T if doing so does not create a
- // cycle in G_T} and the degree of all the vertices in G_T remains
- // bounded by two. This O(|E|) algorithm results in a degree-2
- // spanning forest, or a collection of linear paths that span the
- // graph G.
- template <typename Vertex>
- std::unique_ptr<WeightedGraph<Vertex>> Degree2MaximumSpanningForest(
- const WeightedGraph<Vertex>& graph) {
- // Array of edges sorted in decreasing order of their weights.
- std::vector<std::pair<double, std::pair<Vertex, Vertex>>> weighted_edges;
- auto forest = std::make_unique<WeightedGraph<Vertex>>();
- // Disjoint-set to keep track of the connected components in the
- // maximum spanning tree.
- std::unordered_map<Vertex, Vertex> disjoint_set;
- // Sort of the edges in the graph in decreasing order of their
- // weight. Also add the vertices of the graph to the Maximum
- // Spanning Tree graph and set each vertex to be its own connected
- // component in the disjoint_set structure.
- const std::unordered_set<Vertex>& vertices = graph.vertices();
- for (const Vertex& vertex1 : vertices) {
- forest->AddVertex(vertex1, graph.VertexWeight(vertex1));
- disjoint_set[vertex1] = vertex1;
- const std::unordered_set<Vertex>& neighbors = graph.Neighbors(vertex1);
- for (const Vertex& vertex2 : neighbors) {
- if (vertex1 >= vertex2) {
- continue;
- }
- const double weight = graph.EdgeWeight(vertex1, vertex2);
- weighted_edges.push_back(
- std::make_pair(weight, std::make_pair(vertex1, vertex2)));
- }
- }
- // The elements of this vector, are pairs<edge_weight,
- // edge>. Sorting it using the reverse iterators gives us the edges
- // in decreasing order of edges.
- std::sort(weighted_edges.rbegin(), weighted_edges.rend());
- // Greedily add edges to the spanning tree/forest as long as they do
- // not violate the degree/cycle constraint.
- for (int i = 0; i < weighted_edges.size(); ++i) {
- const std::pair<Vertex, Vertex>& edge = weighted_edges[i].second;
- const Vertex vertex1 = edge.first;
- const Vertex vertex2 = edge.second;
- // Check if either of the vertices are of degree 2 already, in
- // which case adding this edge will violate the degree 2
- // constraint.
- if ((forest->Neighbors(vertex1).size() == 2) ||
- (forest->Neighbors(vertex2).size() == 2)) {
- continue;
- }
- // Find the id of the connected component to which the two
- // vertices belong to. If the id is the same, it means that the
- // two of them are already connected to each other via some other
- // vertex, and adding this edge will create a cycle.
- Vertex root1 = FindConnectedComponent(vertex1, &disjoint_set);
- Vertex root2 = FindConnectedComponent(vertex2, &disjoint_set);
- if (root1 == root2) {
- continue;
- }
- // This edge can be added, add an edge in either direction with
- // the same weight as the original graph.
- const double edge_weight = graph.EdgeWeight(vertex1, vertex2);
- forest->AddEdge(vertex1, vertex2, edge_weight);
- forest->AddEdge(vertex2, vertex1, edge_weight);
- // Connected the two connected components by updating the
- // disjoint_set structure. Always connect the connected component
- // with the greater index with the connected component with the
- // smaller index. This should ensure shallower trees, for quicker
- // lookup.
- if (root2 < root1) {
- std::swap(root1, root2);
- }
- disjoint_set[root2] = root1;
- }
- return forest;
- }
- } // namespace ceres::internal
- #endif // CERES_INTERNAL_GRAPH_ALGORITHMS_H_
|