123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: strandmark@google.com (Petter Strandmark)
- #include "ceres/gradient_problem.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- class QuadraticTestFunction : public ceres::FirstOrderFunction {
- public:
- explicit QuadraticTestFunction(bool* flag_to_set_on_destruction = nullptr)
- : flag_to_set_on_destruction_(flag_to_set_on_destruction) {}
- ~QuadraticTestFunction() override {
- if (flag_to_set_on_destruction_) {
- *flag_to_set_on_destruction_ = true;
- }
- }
- bool Evaluate(const double* parameters,
- double* cost,
- double* gradient) const final {
- const double x = parameters[0];
- cost[0] = x * x;
- if (gradient != nullptr) {
- gradient[0] = 2.0 * x;
- }
- return true;
- }
- int NumParameters() const final { return 1; }
- private:
- bool* flag_to_set_on_destruction_;
- };
- TEST(GradientProblem, TakesOwnershipOfFirstOrderFunction) {
- bool is_destructed = false;
- { ceres::GradientProblem problem(new QuadraticTestFunction(&is_destructed)); }
- EXPECT_TRUE(is_destructed);
- }
- TEST(GradientProblem, EvaluationWithManifoldAndNoGradient) {
- ceres::GradientProblem problem(new QuadraticTestFunction(),
- new EuclideanManifold<1>);
- double x = 7.0;
- double cost = 0;
- problem.Evaluate(&x, &cost, nullptr);
- EXPECT_EQ(x * x, cost);
- }
- TEST(GradientProblem, EvaluationWithoutManifoldAndWithGradient) {
- ceres::GradientProblem problem(new QuadraticTestFunction());
- double x = 7.0;
- double cost = 0;
- double gradient = 0;
- problem.Evaluate(&x, &cost, &gradient);
- EXPECT_EQ(2.0 * x, gradient);
- }
- TEST(GradientProblem, EvaluationWithManifoldAndWithGradient) {
- ceres::GradientProblem problem(new QuadraticTestFunction(),
- new EuclideanManifold<1>);
- double x = 7.0;
- double cost = 0;
- double gradient = 0;
- problem.Evaluate(&x, &cost, &gradient);
- EXPECT_EQ(2.0 * x, gradient);
- }
- } // namespace ceres::internal
|