1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/gradient_problem.h"
- #include <memory>
- #include "glog/logging.h"
- namespace ceres {
- GradientProblem::GradientProblem(FirstOrderFunction* function)
- : function_(function),
- manifold_(std::make_unique<EuclideanManifold<DYNAMIC>>(
- function_->NumParameters())),
- scratch_(new double[function_->NumParameters()]) {
- CHECK(function != nullptr);
- }
- GradientProblem::GradientProblem(FirstOrderFunction* function,
- Manifold* manifold)
- : function_(function), scratch_(new double[function_->NumParameters()]) {
- CHECK(function != nullptr);
- if (manifold != nullptr) {
- manifold_.reset(manifold);
- } else {
- manifold_ = std::make_unique<EuclideanManifold<DYNAMIC>>(
- function_->NumParameters());
- }
- CHECK_EQ(function_->NumParameters(), manifold_->AmbientSize());
- }
- int GradientProblem::NumParameters() const {
- return function_->NumParameters();
- }
- int GradientProblem::NumTangentParameters() const {
- return manifold_->TangentSize();
- }
- bool GradientProblem::Evaluate(const double* parameters,
- double* cost,
- double* gradient) const {
- if (gradient == nullptr) {
- return function_->Evaluate(parameters, cost, nullptr);
- }
- return (function_->Evaluate(parameters, cost, scratch_.get()) &&
- manifold_->RightMultiplyByPlusJacobian(
- parameters, 1, scratch_.get(), gradient));
- }
- bool GradientProblem::Plus(const double* x,
- const double* delta,
- double* x_plus_delta) const {
- return manifold_->Plus(x, delta, x_plus_delta);
- }
- } // namespace ceres
|