123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: keir@google.com (Keir Mierle)
- #include "ceres/gradient_checking_cost_function.h"
- #include <cmath>
- #include <cstdint>
- #include <memory>
- #include <random>
- #include <vector>
- #include "ceres/cost_function.h"
- #include "ceres/loss_function.h"
- #include "ceres/manifold.h"
- #include "ceres/parameter_block.h"
- #include "ceres/problem_impl.h"
- #include "ceres/program.h"
- #include "ceres/residual_block.h"
- #include "ceres/sized_cost_function.h"
- #include "ceres/types.h"
- #include "glog/logging.h"
- #include "gmock/gmock.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- using testing::_;
- using testing::AllOf;
- using testing::AnyNumber;
- using testing::HasSubstr;
- // Pick a (non-quadratic) function whose derivative are easy:
- //
- // f = exp(- a' x).
- // df = - f a.
- //
- // where 'a' is a vector of the same size as 'x'. In the block
- // version, they are both block vectors, of course.
- template <int bad_block = 1, int bad_variable = 2>
- class TestTerm : public CostFunction {
- public:
- // The constructor of this function needs to know the number
- // of blocks desired, and the size of each block.
- template <class UniformRandomFunctor>
- TestTerm(int arity, int const* dim, UniformRandomFunctor&& randu)
- : arity_(arity) {
- // Make 'arity' random vectors.
- a_.resize(arity_);
- for (int j = 0; j < arity_; ++j) {
- a_[j].resize(dim[j]);
- for (int u = 0; u < dim[j]; ++u) {
- a_[j][u] = randu();
- }
- }
- for (int i = 0; i < arity_; i++) {
- mutable_parameter_block_sizes()->push_back(dim[i]);
- }
- set_num_residuals(1);
- }
- bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const override {
- // Compute a . x.
- double ax = 0;
- for (int j = 0; j < arity_; ++j) {
- for (int u = 0; u < parameter_block_sizes()[j]; ++u) {
- ax += a_[j][u] * parameters[j][u];
- }
- }
- // This is the cost, but also appears as a factor
- // in the derivatives.
- double f = *residuals = exp(-ax);
- // Accumulate 1st order derivatives.
- if (jacobians) {
- for (int j = 0; j < arity_; ++j) {
- if (jacobians[j]) {
- for (int u = 0; u < parameter_block_sizes()[j]; ++u) {
- // See comments before class.
- jacobians[j][u] = -f * a_[j][u];
- if (bad_block == j && bad_variable == u) {
- // Whoopsiedoopsie! Deliberately introduce a faulty jacobian entry
- // like what happens when users make an error in their jacobian
- // computations. This should get detected.
- LOG(INFO) << "Poisoning jacobian for parameter block " << j
- << ", row 0, column " << u;
- jacobians[j][u] += 500;
- }
- }
- }
- }
- }
- return true;
- }
- private:
- int arity_;
- std::vector<std::vector<double>> a_;
- };
- TEST(GradientCheckingCostFunction, ResidualsAndJacobiansArePreservedTest) {
- // Test with 3 blocks of size 2, 3 and 4.
- int const arity = 3;
- int const dim[arity] = {2, 3, 4};
- // Make a random set of blocks.
- std::vector<double*> parameters(arity);
- std::mt19937 prng;
- std::uniform_real_distribution<double> distribution(-1.0, 1.0);
- auto randu = [&prng, &distribution] { return distribution(prng); };
- for (int j = 0; j < arity; ++j) {
- parameters[j] = new double[dim[j]];
- for (int u = 0; u < dim[j]; ++u) {
- parameters[j][u] = randu();
- }
- }
- double original_residual;
- double residual;
- std::vector<double*> original_jacobians(arity);
- std::vector<double*> jacobians(arity);
- for (int j = 0; j < arity; ++j) {
- // Since residual is one dimensional the jacobians have the same
- // size as the parameter blocks.
- jacobians[j] = new double[dim[j]];
- original_jacobians[j] = new double[dim[j]];
- }
- const double kRelativeStepSize = 1e-6;
- const double kRelativePrecision = 1e-4;
- TestTerm<-1, -1> term(arity, dim, randu);
- GradientCheckingIterationCallback callback;
- auto gradient_checking_cost_function =
- CreateGradientCheckingCostFunction(&term,
- nullptr,
- kRelativeStepSize,
- kRelativePrecision,
- "Ignored.",
- &callback);
- term.Evaluate(¶meters[0], &original_residual, &original_jacobians[0]);
- gradient_checking_cost_function->Evaluate(
- ¶meters[0], &residual, &jacobians[0]);
- EXPECT_EQ(original_residual, residual);
- for (int j = 0; j < arity; j++) {
- for (int k = 0; k < dim[j]; ++k) {
- EXPECT_EQ(original_jacobians[j][k], jacobians[j][k]);
- }
- delete[] parameters[j];
- delete[] jacobians[j];
- delete[] original_jacobians[j];
- }
- }
- TEST(GradientCheckingCostFunction, SmokeTest) {
- // Test with 3 blocks of size 2, 3 and 4.
- int const arity = 3;
- int const dim[arity] = {2, 3, 4};
- // Make a random set of blocks.
- std::vector<double*> parameters(arity);
- std::mt19937 prng;
- std::uniform_real_distribution<double> distribution(-1.0, 1.0);
- auto randu = [&prng, &distribution] { return distribution(prng); };
- for (int j = 0; j < arity; ++j) {
- parameters[j] = new double[dim[j]];
- for (int u = 0; u < dim[j]; ++u) {
- parameters[j][u] = randu();
- }
- }
- double residual;
- std::vector<double*> jacobians(arity);
- for (int j = 0; j < arity; ++j) {
- // Since residual is one dimensional the jacobians have the same size as the
- // parameter blocks.
- jacobians[j] = new double[dim[j]];
- }
- const double kRelativeStepSize = 1e-6;
- const double kRelativePrecision = 1e-4;
- // Should have one term that's bad, causing everything to get dumped.
- LOG(INFO) << "Bad gradient";
- {
- TestTerm<1, 2> term(arity, dim, randu);
- GradientCheckingIterationCallback callback;
- auto gradient_checking_cost_function =
- CreateGradientCheckingCostFunction(&term,
- nullptr,
- kRelativeStepSize,
- kRelativePrecision,
- "Fuzzy banana",
- &callback);
- EXPECT_TRUE(gradient_checking_cost_function->Evaluate(
- ¶meters[0], &residual, &jacobians[0]));
- EXPECT_TRUE(callback.gradient_error_detected());
- EXPECT_TRUE(callback.error_log().find("Fuzzy banana") != std::string::npos);
- EXPECT_TRUE(callback.error_log().find(
- "(1,0,2) Relative error worse than") != std::string::npos);
- }
- // The gradient is correct, so no errors are reported.
- LOG(INFO) << "Good gradient";
- {
- TestTerm<-1, -1> term(arity, dim, randu);
- GradientCheckingIterationCallback callback;
- auto gradient_checking_cost_function =
- CreateGradientCheckingCostFunction(&term,
- nullptr,
- kRelativeStepSize,
- kRelativePrecision,
- "Fuzzy banana",
- &callback);
- EXPECT_TRUE(gradient_checking_cost_function->Evaluate(
- ¶meters[0], &residual, &jacobians[0]));
- EXPECT_FALSE(callback.gradient_error_detected());
- }
- for (int j = 0; j < arity; j++) {
- delete[] parameters[j];
- delete[] jacobians[j];
- }
- }
- // The following three classes are for the purposes of defining
- // function signatures. They have dummy Evaluate functions.
- // Trivial cost function that accepts a single argument.
- class UnaryCostFunction : public CostFunction {
- public:
- UnaryCostFunction(int num_residuals, int32_t parameter_block_size) {
- set_num_residuals(num_residuals);
- mutable_parameter_block_sizes()->push_back(parameter_block_size);
- }
- bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const final {
- for (int i = 0; i < num_residuals(); ++i) {
- residuals[i] = 1;
- }
- return true;
- }
- };
- // Trivial cost function that accepts two arguments.
- class BinaryCostFunction : public CostFunction {
- public:
- BinaryCostFunction(int num_residuals,
- int32_t parameter_block1_size,
- int32_t parameter_block2_size) {
- set_num_residuals(num_residuals);
- mutable_parameter_block_sizes()->push_back(parameter_block1_size);
- mutable_parameter_block_sizes()->push_back(parameter_block2_size);
- }
- bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const final {
- for (int i = 0; i < num_residuals(); ++i) {
- residuals[i] = 2;
- }
- return true;
- }
- };
- // Trivial cost function that accepts three arguments.
- class TernaryCostFunction : public CostFunction {
- public:
- TernaryCostFunction(int num_residuals,
- int32_t parameter_block1_size,
- int32_t parameter_block2_size,
- int32_t parameter_block3_size) {
- set_num_residuals(num_residuals);
- mutable_parameter_block_sizes()->push_back(parameter_block1_size);
- mutable_parameter_block_sizes()->push_back(parameter_block2_size);
- mutable_parameter_block_sizes()->push_back(parameter_block3_size);
- }
- bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const final {
- for (int i = 0; i < num_residuals(); ++i) {
- residuals[i] = 3;
- }
- return true;
- }
- };
- // Verify that the two ParameterBlocks are formed from the same user
- // array and have the same Manifold objects.
- static void ParameterBlocksAreEquivalent(const ParameterBlock* left,
- const ParameterBlock* right) {
- CHECK(left != nullptr);
- CHECK(right != nullptr);
- EXPECT_EQ(left->user_state(), right->user_state());
- EXPECT_EQ(left->Size(), right->Size());
- EXPECT_EQ(left->Size(), right->Size());
- EXPECT_EQ(left->TangentSize(), right->TangentSize());
- EXPECT_EQ(left->manifold(), right->manifold());
- EXPECT_EQ(left->IsConstant(), right->IsConstant());
- }
- TEST(GradientCheckingProblemImpl, ProblemDimensionsMatch) {
- // Parameter blocks with arbitrarily chosen initial values.
- double x[] = {1.0, 2.0, 3.0};
- double y[] = {4.0, 5.0, 6.0, 7.0};
- double z[] = {8.0, 9.0, 10.0, 11.0, 12.0};
- double w[] = {13.0, 14.0, 15.0, 16.0};
- ProblemImpl problem_impl;
- problem_impl.AddParameterBlock(x, 3);
- problem_impl.AddParameterBlock(y, 4);
- problem_impl.SetParameterBlockConstant(y);
- problem_impl.AddParameterBlock(z, 5);
- problem_impl.AddParameterBlock(w, 4, new QuaternionManifold);
- // clang-format off
- problem_impl.AddResidualBlock(new UnaryCostFunction(2, 3),
- nullptr, x);
- problem_impl.AddResidualBlock(new BinaryCostFunction(6, 5, 4),
- nullptr, z, y);
- problem_impl.AddResidualBlock(new BinaryCostFunction(3, 3, 5),
- new TrivialLoss, x, z);
- problem_impl.AddResidualBlock(new BinaryCostFunction(7, 5, 3),
- nullptr, z, x);
- problem_impl.AddResidualBlock(new TernaryCostFunction(1, 5, 3, 4),
- nullptr, z, x, y);
- // clang-format on
- GradientCheckingIterationCallback callback;
- auto gradient_checking_problem_impl =
- CreateGradientCheckingProblemImpl(&problem_impl, 1.0, 1.0, &callback);
- // The dimensions of the two problems match.
- EXPECT_EQ(problem_impl.NumParameterBlocks(),
- gradient_checking_problem_impl->NumParameterBlocks());
- EXPECT_EQ(problem_impl.NumResidualBlocks(),
- gradient_checking_problem_impl->NumResidualBlocks());
- EXPECT_EQ(problem_impl.NumParameters(),
- gradient_checking_problem_impl->NumParameters());
- EXPECT_EQ(problem_impl.NumResiduals(),
- gradient_checking_problem_impl->NumResiduals());
- const Program& program = problem_impl.program();
- const Program& gradient_checking_program =
- gradient_checking_problem_impl->program();
- // Since we added the ParameterBlocks and ResidualBlocks explicitly,
- // they should be in the same order in the two programs. It is
- // possible that may change due to implementation changes to
- // Program. This is not expected to be the case and writing code to
- // anticipate that possibility not worth the extra complexity in
- // this test.
- for (int i = 0; i < program.parameter_blocks().size(); ++i) {
- ParameterBlocksAreEquivalent(
- program.parameter_blocks()[i],
- gradient_checking_program.parameter_blocks()[i]);
- }
- for (int i = 0; i < program.residual_blocks().size(); ++i) {
- // Compare the sizes of the two ResidualBlocks.
- const ResidualBlock* original_residual_block = program.residual_blocks()[i];
- const ResidualBlock* new_residual_block =
- gradient_checking_program.residual_blocks()[i];
- EXPECT_EQ(original_residual_block->NumParameterBlocks(),
- new_residual_block->NumParameterBlocks());
- EXPECT_EQ(original_residual_block->NumResiduals(),
- new_residual_block->NumResiduals());
- EXPECT_EQ(original_residual_block->NumScratchDoublesForEvaluate(),
- new_residual_block->NumScratchDoublesForEvaluate());
- // Verify that the ParameterBlocks for the two residuals are equivalent.
- for (int j = 0; j < original_residual_block->NumParameterBlocks(); ++j) {
- ParameterBlocksAreEquivalent(
- original_residual_block->parameter_blocks()[j],
- new_residual_block->parameter_blocks()[j]);
- }
- }
- }
- TEST(GradientCheckingProblemImpl, ConstrainedProblemBoundsArePropagated) {
- // Parameter blocks with arbitrarily chosen initial values.
- double x[] = {1.0, 2.0, 3.0};
- ProblemImpl problem_impl;
- problem_impl.AddParameterBlock(x, 3);
- problem_impl.AddResidualBlock(new UnaryCostFunction(2, 3), nullptr, x);
- problem_impl.SetParameterLowerBound(x, 0, 0.9);
- problem_impl.SetParameterUpperBound(x, 1, 2.5);
- GradientCheckingIterationCallback callback;
- auto gradient_checking_problem_impl =
- CreateGradientCheckingProblemImpl(&problem_impl, 1.0, 1.0, &callback);
- // The dimensions of the two problems match.
- EXPECT_EQ(problem_impl.NumParameterBlocks(),
- gradient_checking_problem_impl->NumParameterBlocks());
- EXPECT_EQ(problem_impl.NumResidualBlocks(),
- gradient_checking_problem_impl->NumResidualBlocks());
- EXPECT_EQ(problem_impl.NumParameters(),
- gradient_checking_problem_impl->NumParameters());
- EXPECT_EQ(problem_impl.NumResiduals(),
- gradient_checking_problem_impl->NumResiduals());
- for (int i = 0; i < 3; ++i) {
- EXPECT_EQ(problem_impl.GetParameterLowerBound(x, i),
- gradient_checking_problem_impl->GetParameterLowerBound(x, i));
- EXPECT_EQ(problem_impl.GetParameterUpperBound(x, i),
- gradient_checking_problem_impl->GetParameterUpperBound(x, i));
- }
- }
- } // namespace ceres::internal
|