123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Authors: keir@google.com (Keir Mierle),
- // dgossow@google.com (David Gossow)
- #ifndef CERES_INTERNAL_GRADIENT_CHECKING_COST_FUNCTION_H_
- #define CERES_INTERNAL_GRADIENT_CHECKING_COST_FUNCTION_H_
- #include <memory>
- #include <mutex>
- #include <string>
- #include "ceres/cost_function.h"
- #include "ceres/internal/disable_warnings.h"
- #include "ceres/internal/export.h"
- #include "ceres/iteration_callback.h"
- #include "ceres/manifold.h"
- namespace ceres::internal {
- class ProblemImpl;
- // Callback that collects information about gradient checking errors, and
- // will abort the solve as soon as an error occurs.
- class CERES_NO_EXPORT GradientCheckingIterationCallback
- : public IterationCallback {
- public:
- GradientCheckingIterationCallback();
- // Will return SOLVER_CONTINUE until a gradient error has been detected,
- // then return SOLVER_ABORT.
- CallbackReturnType operator()(const IterationSummary& summary) final;
- // Notify this that a gradient error has occurred (thread safe).
- void SetGradientErrorDetected(std::string& error_log);
- // Retrieve error status (not thread safe).
- bool gradient_error_detected() const { return gradient_error_detected_; }
- const std::string& error_log() const { return error_log_; }
- private:
- bool gradient_error_detected_;
- std::string error_log_;
- std::mutex mutex_;
- };
- // Creates a CostFunction that checks the Jacobians that cost_function computes
- // with finite differences. This API is only intended for unit tests that intend
- // to check the functionality of the GradientCheckingCostFunction
- // implementation directly.
- CERES_NO_EXPORT std::unique_ptr<CostFunction>
- CreateGradientCheckingCostFunction(
- const CostFunction* cost_function,
- const std::vector<const Manifold*>* manifolds,
- double relative_step_size,
- double relative_precision,
- const std::string& extra_info,
- GradientCheckingIterationCallback* callback);
- // Create a new ProblemImpl object from the input problem_impl, where all
- // cost functions are wrapped so that each time their Evaluate method is called,
- // an additional check is performed that compares the Jacobians computed by
- // the original cost function with alternative Jacobians computed using
- // numerical differentiation. If local parameterizations are given for any
- // parameters, the Jacobians will be compared in the local space instead of the
- // ambient space. For details on the gradient checking procedure, see the
- // documentation of the GradientChecker class. If an error is detected in any
- // iteration, the respective cost function will notify the
- // GradientCheckingIterationCallback.
- //
- // Note: This is quite inefficient and is intended only for debugging.
- //
- // relative_step_size and relative_precision are parameters to control
- // the numeric differentiation and the relative tolerance between the
- // jacobian computed by the CostFunctions in problem_impl and
- // jacobians obtained by numerically differentiating them. See the
- // documentation of 'numeric_derivative_relative_step_size' in solver.h for a
- // better explanation.
- CERES_NO_EXPORT std::unique_ptr<ProblemImpl> CreateGradientCheckingProblemImpl(
- ProblemImpl* problem_impl,
- double relative_step_size,
- double relative_precision,
- GradientCheckingIterationCallback* callback);
- } // namespace ceres::internal
- #include "ceres/internal/reenable_warnings.h"
- #endif // CERES_INTERNAL_GRADIENT_CHECKING_COST_FUNCTION_H_
|