12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin)
- #include <memory>
- #include <random>
- #include <string>
- #include <vector>
- #include "benchmark/benchmark.h"
- #include "ceres/block_sparse_matrix.h"
- #include "ceres/bundle_adjustment_test_util.h"
- #include "ceres/cuda_block_sparse_crs_view.h"
- #include "ceres/cuda_partitioned_block_sparse_crs_view.h"
- #include "ceres/cuda_sparse_matrix.h"
- #include "ceres/cuda_vector.h"
- #include "ceres/evaluator.h"
- #include "ceres/implicit_schur_complement.h"
- #include "ceres/partitioned_matrix_view.h"
- #include "ceres/power_series_expansion_preconditioner.h"
- #include "ceres/preprocessor.h"
- #include "ceres/problem.h"
- #include "ceres/problem_impl.h"
- #include "ceres/program.h"
- #include "ceres/sparse_matrix.h"
- namespace ceres::internal {
- template <typename Derived, typename Base>
- std::unique_ptr<Derived> downcast_unique_ptr(std::unique_ptr<Base>& base) {
- return std::unique_ptr<Derived>(dynamic_cast<Derived*>(base.release()));
- }
- // Benchmark library might invoke benchmark function multiple times.
- // In order to save time required to parse BAL data, we ensure that
- // each dataset is being loaded at most once.
- // Each type of jacobians is also cached after first creation
- struct BALData {
- using PartitionedView = PartitionedMatrixView<2, 3, 9>;
- explicit BALData(const std::string& path) {
- bal_problem = std::make_unique<BundleAdjustmentProblem>(path);
- CHECK(bal_problem != nullptr);
- auto problem_impl = bal_problem->mutable_problem()->mutable_impl();
- auto preprocessor = Preprocessor::Create(MinimizerType::TRUST_REGION);
- preprocessed_problem = std::make_unique<PreprocessedProblem>();
- Solver::Options options = bal_problem->options();
- options.linear_solver_type = ITERATIVE_SCHUR;
- CHECK(preprocessor->Preprocess(
- options, problem_impl, preprocessed_problem.get()));
- auto program = preprocessed_problem->reduced_program.get();
- parameters.resize(program->NumParameters());
- program->ParameterBlocksToStateVector(parameters.data());
- const int num_residuals = program->NumResiduals();
- b.resize(num_residuals);
- std::mt19937 rng;
- std::normal_distribution<double> rnorm;
- for (int i = 0; i < num_residuals; ++i) {
- b[i] = rnorm(rng);
- }
- const int num_parameters = program->NumParameters();
- D.resize(num_parameters);
- for (int i = 0; i < num_parameters; ++i) {
- D[i] = rnorm(rng);
- }
- }
- std::unique_ptr<BlockSparseMatrix> CreateBlockSparseJacobian(
- ContextImpl* context, bool sequential) {
- auto problem = bal_problem->mutable_problem();
- auto problem_impl = problem->mutable_impl();
- CHECK(problem_impl != nullptr);
- Evaluator::Options options;
- options.linear_solver_type = ITERATIVE_SCHUR;
- options.num_threads = 1;
- options.context = context;
- options.num_eliminate_blocks = bal_problem->num_points();
- std::string error;
- auto program = preprocessed_problem->reduced_program.get();
- auto evaluator = Evaluator::Create(options, program, &error);
- CHECK(evaluator != nullptr);
- auto jacobian = evaluator->CreateJacobian();
- auto block_sparse = downcast_unique_ptr<BlockSparseMatrix>(jacobian);
- CHECK(block_sparse != nullptr);
- if (sequential) {
- auto block_structure_sequential =
- std::make_unique<CompressedRowBlockStructure>(
- *block_sparse->block_structure());
- int num_nonzeros = 0;
- for (auto& row_block : block_structure_sequential->rows) {
- const int row_block_size = row_block.block.size;
- for (auto& cell : row_block.cells) {
- const int col_block_size =
- block_structure_sequential->cols[cell.block_id].size;
- cell.position = num_nonzeros;
- num_nonzeros += col_block_size * row_block_size;
- }
- }
- block_sparse = std::make_unique<BlockSparseMatrix>(
- block_structure_sequential.release(),
- #ifndef CERES_NO_CUDA
- true
- #else
- false
- #endif
- );
- }
- std::mt19937 rng;
- std::normal_distribution<double> rnorm;
- const int nnz = block_sparse->num_nonzeros();
- auto values = block_sparse->mutable_values();
- for (int i = 0; i < nnz; ++i) {
- values[i] = rnorm(rng);
- }
- return block_sparse;
- }
- std::unique_ptr<CompressedRowSparseMatrix> CreateCompressedRowSparseJacobian(
- ContextImpl* context) {
- auto block_sparse = BlockSparseJacobian(context);
- return block_sparse->ToCompressedRowSparseMatrix();
- }
- const BlockSparseMatrix* BlockSparseJacobian(ContextImpl* context) {
- if (!block_sparse_jacobian) {
- block_sparse_jacobian = CreateBlockSparseJacobian(context, true);
- }
- return block_sparse_jacobian.get();
- }
- const BlockSparseMatrix* BlockSparseJacobianPartitioned(
- ContextImpl* context) {
- if (!block_sparse_jacobian_partitioned) {
- block_sparse_jacobian_partitioned =
- CreateBlockSparseJacobian(context, false);
- }
- return block_sparse_jacobian_partitioned.get();
- }
- const CompressedRowSparseMatrix* CompressedRowSparseJacobian(
- ContextImpl* context) {
- if (!crs_jacobian) {
- crs_jacobian = CreateCompressedRowSparseJacobian(context);
- }
- return crs_jacobian.get();
- }
- std::unique_ptr<PartitionedView> PartitionedMatrixViewJacobian(
- const LinearSolver::Options& options) {
- auto block_sparse = BlockSparseJacobianPartitioned(options.context);
- return std::make_unique<PartitionedView>(options, *block_sparse);
- }
- BlockSparseMatrix* BlockDiagonalEtE(const LinearSolver::Options& options) {
- if (!block_diagonal_ete) {
- auto partitioned_view = PartitionedMatrixViewJacobian(options);
- block_diagonal_ete = partitioned_view->CreateBlockDiagonalEtE();
- }
- return block_diagonal_ete.get();
- }
- BlockSparseMatrix* BlockDiagonalFtF(const LinearSolver::Options& options) {
- if (!block_diagonal_ftf) {
- auto partitioned_view = PartitionedMatrixViewJacobian(options);
- block_diagonal_ftf = partitioned_view->CreateBlockDiagonalFtF();
- }
- return block_diagonal_ftf.get();
- }
- const ImplicitSchurComplement* ImplicitSchurComplementWithoutDiagonal(
- const LinearSolver::Options& options) {
- auto block_sparse = BlockSparseJacobianPartitioned(options.context);
- implicit_schur_complement =
- std::make_unique<ImplicitSchurComplement>(options);
- implicit_schur_complement->Init(*block_sparse, nullptr, b.data());
- return implicit_schur_complement.get();
- }
- const ImplicitSchurComplement* ImplicitSchurComplementWithDiagonal(
- const LinearSolver::Options& options) {
- auto block_sparse = BlockSparseJacobianPartitioned(options.context);
- implicit_schur_complement_diag =
- std::make_unique<ImplicitSchurComplement>(options);
- implicit_schur_complement_diag->Init(*block_sparse, D.data(), b.data());
- return implicit_schur_complement_diag.get();
- }
- Vector parameters;
- Vector D;
- Vector b;
- std::unique_ptr<BundleAdjustmentProblem> bal_problem;
- std::unique_ptr<PreprocessedProblem> preprocessed_problem;
- std::unique_ptr<BlockSparseMatrix> block_sparse_jacobian_partitioned;
- std::unique_ptr<BlockSparseMatrix> block_sparse_jacobian;
- std::unique_ptr<CompressedRowSparseMatrix> crs_jacobian;
- std::unique_ptr<BlockSparseMatrix> block_diagonal_ete;
- std::unique_ptr<BlockSparseMatrix> block_diagonal_ftf;
- std::unique_ptr<ImplicitSchurComplement> implicit_schur_complement;
- std::unique_ptr<ImplicitSchurComplement> implicit_schur_complement_diag;
- };
- static void Residuals(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- const int num_threads = static_cast<int>(state.range(0));
- Evaluator::Options options;
- options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
- options.num_threads = num_threads;
- options.context = context;
- options.num_eliminate_blocks = 0;
- std::string error;
- CHECK(data->preprocessed_problem != nullptr);
- auto program = data->preprocessed_problem->reduced_program.get();
- CHECK(program != nullptr);
- auto evaluator = Evaluator::Create(options, program, &error);
- CHECK(evaluator != nullptr);
- double cost = 0.;
- Vector residuals = Vector::Zero(program->NumResiduals());
- Evaluator::EvaluateOptions eval_options;
- for (auto _ : state) {
- CHECK(evaluator->Evaluate(eval_options,
- data->parameters.data(),
- &cost,
- residuals.data(),
- nullptr,
- nullptr));
- }
- }
- static void ResidualsAndJacobian(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- const int num_threads = static_cast<int>(state.range(0));
- Evaluator::Options options;
- options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
- options.num_threads = num_threads;
- options.context = context;
- options.num_eliminate_blocks = 0;
- std::string error;
- CHECK(data->preprocessed_problem != nullptr);
- auto program = data->preprocessed_problem->reduced_program.get();
- CHECK(program != nullptr);
- auto evaluator = Evaluator::Create(options, program, &error);
- CHECK(evaluator != nullptr);
- double cost = 0.;
- Vector residuals = Vector::Zero(program->NumResiduals());
- auto jacobian = evaluator->CreateJacobian();
- Evaluator::EvaluateOptions eval_options;
- for (auto _ : state) {
- CHECK(evaluator->Evaluate(eval_options,
- data->parameters.data(),
- &cost,
- residuals.data(),
- nullptr,
- jacobian.get()));
- }
- }
- static void Plus(benchmark::State& state, BALData* data, ContextImpl* context) {
- const int num_threads = static_cast<int>(state.range(0));
- Evaluator::Options options;
- options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
- options.num_threads = num_threads;
- options.context = context;
- options.num_eliminate_blocks = 0;
- std::string error;
- CHECK(data->preprocessed_problem != nullptr);
- auto program = data->preprocessed_problem->reduced_program.get();
- CHECK(program != nullptr);
- auto evaluator = Evaluator::Create(options, program, &error);
- CHECK(evaluator != nullptr);
- Vector state_plus_delta = Vector::Zero(program->NumParameters());
- Vector delta = Vector::Random(program->NumEffectiveParameters());
- for (auto _ : state) {
- CHECK(evaluator->Plus(
- data->parameters.data(), delta.data(), state_plus_delta.data()));
- }
- CHECK_GT(state_plus_delta.squaredNorm(), 0.);
- }
- static void PSEPreconditioner(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- LinearSolver::Options options;
- options.num_threads = static_cast<int>(state.range(0));
- options.elimination_groups.push_back(data->bal_problem->num_points());
- options.context = context;
- auto jacobian = data->ImplicitSchurComplementWithDiagonal(options);
- Preconditioner::Options preconditioner_options(options);
- PowerSeriesExpansionPreconditioner preconditioner(
- jacobian, 10, 0, preconditioner_options);
- Vector y = Vector::Zero(jacobian->num_cols());
- Vector x = Vector::Random(jacobian->num_cols());
- for (auto _ : state) {
- preconditioner.RightMultiplyAndAccumulate(x.data(), y.data());
- }
- CHECK_GT(y.squaredNorm(), 0.);
- }
- static void PMVRightMultiplyAndAccumulateF(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- LinearSolver::Options options;
- options.num_threads = static_cast<int>(state.range(0));
- options.elimination_groups.push_back(data->bal_problem->num_points());
- options.context = context;
- auto jacobian = data->PartitionedMatrixViewJacobian(options);
- Vector y = Vector::Zero(jacobian->num_rows());
- Vector x = Vector::Random(jacobian->num_cols_f());
- for (auto _ : state) {
- jacobian->RightMultiplyAndAccumulateF(x.data(), y.data());
- }
- CHECK_GT(y.squaredNorm(), 0.);
- }
- static void PMVLeftMultiplyAndAccumulateF(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- LinearSolver::Options options;
- options.num_threads = static_cast<int>(state.range(0));
- options.elimination_groups.push_back(data->bal_problem->num_points());
- options.context = context;
- auto jacobian = data->PartitionedMatrixViewJacobian(options);
- Vector y = Vector::Zero(jacobian->num_cols_f());
- Vector x = Vector::Random(jacobian->num_rows());
- for (auto _ : state) {
- jacobian->LeftMultiplyAndAccumulateF(x.data(), y.data());
- }
- CHECK_GT(y.squaredNorm(), 0.);
- }
- static void PMVRightMultiplyAndAccumulateE(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- LinearSolver::Options options;
- options.num_threads = static_cast<int>(state.range(0));
- options.elimination_groups.push_back(data->bal_problem->num_points());
- options.context = context;
- auto jacobian = data->PartitionedMatrixViewJacobian(options);
- Vector y = Vector::Zero(jacobian->num_rows());
- Vector x = Vector::Random(jacobian->num_cols_e());
- for (auto _ : state) {
- jacobian->RightMultiplyAndAccumulateE(x.data(), y.data());
- }
- CHECK_GT(y.squaredNorm(), 0.);
- }
- static void PMVLeftMultiplyAndAccumulateE(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- LinearSolver::Options options;
- options.num_threads = static_cast<int>(state.range(0));
- options.elimination_groups.push_back(data->bal_problem->num_points());
- options.context = context;
- auto jacobian = data->PartitionedMatrixViewJacobian(options);
- Vector y = Vector::Zero(jacobian->num_cols_e());
- Vector x = Vector::Random(jacobian->num_rows());
- for (auto _ : state) {
- jacobian->LeftMultiplyAndAccumulateE(x.data(), y.data());
- }
- CHECK_GT(y.squaredNorm(), 0.);
- }
- static void PMVUpdateBlockDiagonalEtE(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- LinearSolver::Options options;
- options.num_threads = static_cast<int>(state.range(0));
- options.elimination_groups.push_back(data->bal_problem->num_points());
- options.context = context;
- auto jacobian = data->PartitionedMatrixViewJacobian(options);
- auto block_diagonal_ete = data->BlockDiagonalEtE(options);
- for (auto _ : state) {
- jacobian->UpdateBlockDiagonalEtE(block_diagonal_ete);
- }
- }
- static void PMVUpdateBlockDiagonalFtF(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- LinearSolver::Options options;
- options.num_threads = static_cast<int>(state.range(0));
- options.elimination_groups.push_back(data->bal_problem->num_points());
- options.context = context;
- auto jacobian = data->PartitionedMatrixViewJacobian(options);
- auto block_diagonal_ftf = data->BlockDiagonalFtF(options);
- for (auto _ : state) {
- jacobian->UpdateBlockDiagonalFtF(block_diagonal_ftf);
- }
- }
- static void ISCRightMultiplyNoDiag(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- LinearSolver::Options options;
- options.num_threads = static_cast<int>(state.range(0));
- options.elimination_groups.push_back(data->bal_problem->num_points());
- options.context = context;
- auto jacobian = data->ImplicitSchurComplementWithoutDiagonal(options);
- Vector y = Vector::Zero(jacobian->num_rows());
- Vector x = Vector::Random(jacobian->num_cols());
- for (auto _ : state) {
- jacobian->RightMultiplyAndAccumulate(x.data(), y.data());
- }
- CHECK_GT(y.squaredNorm(), 0.);
- }
- static void ISCRightMultiplyDiag(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- LinearSolver::Options options;
- options.num_threads = static_cast<int>(state.range(0));
- options.elimination_groups.push_back(data->bal_problem->num_points());
- options.context = context;
- auto jacobian = data->ImplicitSchurComplementWithDiagonal(options);
- Vector y = Vector::Zero(jacobian->num_rows());
- Vector x = Vector::Random(jacobian->num_cols());
- for (auto _ : state) {
- jacobian->RightMultiplyAndAccumulate(x.data(), y.data());
- }
- CHECK_GT(y.squaredNorm(), 0.);
- }
- static void JacobianToCRS(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- auto jacobian = data->BlockSparseJacobian(context);
- std::unique_ptr<CompressedRowSparseMatrix> matrix;
- for (auto _ : state) {
- matrix = jacobian->ToCompressedRowSparseMatrix();
- }
- CHECK(matrix != nullptr);
- }
- #ifndef CERES_NO_CUDA
- static void PMVRightMultiplyAndAccumulateFCuda(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- LinearSolver::Options options;
- options.elimination_groups.push_back(data->bal_problem->num_points());
- options.context = context;
- options.num_threads = 1;
- auto jacobian = data->PartitionedMatrixViewJacobian(options);
- auto underlying_matrix = data->BlockSparseJacobianPartitioned(context);
- CudaPartitionedBlockSparseCRSView view(
- *underlying_matrix, jacobian->num_col_blocks_e(), context);
- Vector x = Vector::Random(jacobian->num_cols_f());
- CudaVector cuda_x(context, x.size());
- CudaVector cuda_y(context, jacobian->num_rows());
- cuda_x.CopyFromCpu(x);
- cuda_y.SetZero();
- auto matrix = view.matrix_f();
- for (auto _ : state) {
- matrix->RightMultiplyAndAccumulate(cuda_x, &cuda_y);
- }
- CHECK_GT(cuda_y.Norm(), 0.);
- }
- static void PMVLeftMultiplyAndAccumulateFCuda(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- LinearSolver::Options options;
- options.elimination_groups.push_back(data->bal_problem->num_points());
- options.context = context;
- options.num_threads = 1;
- auto jacobian = data->PartitionedMatrixViewJacobian(options);
- auto underlying_matrix = data->BlockSparseJacobianPartitioned(context);
- CudaPartitionedBlockSparseCRSView view(
- *underlying_matrix, jacobian->num_col_blocks_e(), context);
- Vector x = Vector::Random(jacobian->num_rows());
- CudaVector cuda_x(context, x.size());
- CudaVector cuda_y(context, jacobian->num_cols_f());
- cuda_x.CopyFromCpu(x);
- cuda_y.SetZero();
- auto matrix = view.matrix_f();
- for (auto _ : state) {
- matrix->LeftMultiplyAndAccumulate(cuda_x, &cuda_y);
- }
- CHECK_GT(cuda_y.Norm(), 0.);
- }
- static void PMVRightMultiplyAndAccumulateECuda(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- LinearSolver::Options options;
- options.elimination_groups.push_back(data->bal_problem->num_points());
- options.context = context;
- options.num_threads = 1;
- auto jacobian = data->PartitionedMatrixViewJacobian(options);
- auto underlying_matrix = data->BlockSparseJacobianPartitioned(context);
- CudaPartitionedBlockSparseCRSView view(
- *underlying_matrix, jacobian->num_col_blocks_e(), context);
- Vector x = Vector::Random(jacobian->num_cols_e());
- CudaVector cuda_x(context, x.size());
- CudaVector cuda_y(context, jacobian->num_rows());
- cuda_x.CopyFromCpu(x);
- cuda_y.SetZero();
- auto matrix = view.matrix_e();
- for (auto _ : state) {
- matrix->RightMultiplyAndAccumulate(cuda_x, &cuda_y);
- }
- CHECK_GT(cuda_y.Norm(), 0.);
- }
- static void PMVLeftMultiplyAndAccumulateECuda(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- LinearSolver::Options options;
- options.elimination_groups.push_back(data->bal_problem->num_points());
- options.context = context;
- options.num_threads = 1;
- auto jacobian = data->PartitionedMatrixViewJacobian(options);
- auto underlying_matrix = data->BlockSparseJacobianPartitioned(context);
- CudaPartitionedBlockSparseCRSView view(
- *underlying_matrix, jacobian->num_col_blocks_e(), context);
- Vector x = Vector::Random(jacobian->num_rows());
- CudaVector cuda_x(context, x.size());
- CudaVector cuda_y(context, jacobian->num_cols_e());
- cuda_x.CopyFromCpu(x);
- cuda_y.SetZero();
- auto matrix = view.matrix_e();
- for (auto _ : state) {
- matrix->LeftMultiplyAndAccumulate(cuda_x, &cuda_y);
- }
- CHECK_GT(cuda_y.Norm(), 0.);
- }
- // We want CudaBlockSparseCRSView to be not slower than explicit conversion to
- // CRS on CPU
- static void JacobianToCRSView(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- auto jacobian = data->BlockSparseJacobian(context);
- std::unique_ptr<CudaBlockSparseCRSView> matrix;
- for (auto _ : state) {
- matrix = std::make_unique<CudaBlockSparseCRSView>(*jacobian, context);
- }
- CHECK(matrix != nullptr);
- }
- static void JacobianToCRSMatrix(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- auto jacobian = data->BlockSparseJacobian(context);
- std::unique_ptr<CudaSparseMatrix> matrix;
- std::unique_ptr<CompressedRowSparseMatrix> matrix_cpu;
- for (auto _ : state) {
- matrix_cpu = jacobian->ToCompressedRowSparseMatrix();
- matrix = std::make_unique<CudaSparseMatrix>(context, *matrix_cpu);
- }
- CHECK(matrix != nullptr);
- }
- // Updating values in CudaBlockSparseCRSView should be +- as fast as just
- // copying values (time spent in value permutation has to be hidden by PCIe
- // transfer)
- static void JacobianToCRSViewUpdate(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- auto jacobian = data->BlockSparseJacobian(context);
- auto matrix = CudaBlockSparseCRSView(*jacobian, context);
- for (auto _ : state) {
- matrix.UpdateValues(*jacobian);
- }
- }
- static void JacobianToCRSMatrixUpdate(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- auto jacobian = data->BlockSparseJacobian(context);
- auto matrix_cpu = jacobian->ToCompressedRowSparseMatrix();
- auto matrix = std::make_unique<CudaSparseMatrix>(context, *matrix_cpu);
- for (auto _ : state) {
- CHECK_EQ(cudaSuccess,
- cudaMemcpy(matrix->mutable_values(),
- matrix_cpu->values(),
- matrix->num_nonzeros() * sizeof(double),
- cudaMemcpyHostToDevice));
- }
- }
- #endif
- static void JacobianSquaredColumnNorm(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- const int num_threads = static_cast<int>(state.range(0));
- auto jacobian = data->BlockSparseJacobian(context);
- Vector x = Vector::Zero(jacobian->num_cols());
- for (auto _ : state) {
- jacobian->SquaredColumnNorm(x.data(), context, num_threads);
- }
- CHECK_GT(x.squaredNorm(), 0.);
- }
- static void JacobianScaleColumns(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- const int num_threads = static_cast<int>(state.range(0));
- auto jacobian_const = data->BlockSparseJacobian(context);
- auto jacobian = const_cast<BlockSparseMatrix*>(jacobian_const);
- Vector x = Vector::Ones(jacobian->num_cols());
- for (auto _ : state) {
- jacobian->ScaleColumns(x.data(), context, num_threads);
- }
- }
- static void JacobianRightMultiplyAndAccumulate(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- const int num_threads = static_cast<int>(state.range(0));
- auto jacobian = data->BlockSparseJacobian(context);
- Vector y = Vector::Zero(jacobian->num_rows());
- Vector x = Vector::Random(jacobian->num_cols());
- for (auto _ : state) {
- jacobian->RightMultiplyAndAccumulate(
- x.data(), y.data(), context, num_threads);
- }
- CHECK_GT(y.squaredNorm(), 0.);
- }
- static void JacobianLeftMultiplyAndAccumulate(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- const int num_threads = static_cast<int>(state.range(0));
- auto jacobian = data->BlockSparseJacobian(context);
- Vector y = Vector::Zero(jacobian->num_cols());
- Vector x = Vector::Random(jacobian->num_rows());
- for (auto _ : state) {
- jacobian->LeftMultiplyAndAccumulate(
- x.data(), y.data(), context, num_threads);
- }
- CHECK_GT(y.squaredNorm(), 0.);
- }
- #ifndef CERES_NO_CUDA
- static void JacobianRightMultiplyAndAccumulateCuda(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- auto crs_jacobian = data->CompressedRowSparseJacobian(context);
- CudaSparseMatrix cuda_jacobian(context, *crs_jacobian);
- CudaVector cuda_x(context, 0);
- CudaVector cuda_y(context, 0);
- Vector x(crs_jacobian->num_cols());
- Vector y(crs_jacobian->num_rows());
- x.setRandom();
- y.setRandom();
- cuda_x.CopyFromCpu(x);
- cuda_y.CopyFromCpu(y);
- double sum = 0;
- for (auto _ : state) {
- cuda_jacobian.RightMultiplyAndAccumulate(cuda_x, &cuda_y);
- sum += cuda_y.Norm();
- CHECK_EQ(cudaDeviceSynchronize(), cudaSuccess);
- }
- CHECK_NE(sum, 0.0);
- }
- static void JacobianLeftMultiplyAndAccumulateCuda(benchmark::State& state,
- BALData* data,
- ContextImpl* context) {
- auto crs_jacobian = data->CompressedRowSparseJacobian(context);
- CudaSparseMatrix cuda_jacobian(context, *crs_jacobian);
- CudaVector cuda_x(context, 0);
- CudaVector cuda_y(context, 0);
- Vector x(crs_jacobian->num_rows());
- Vector y(crs_jacobian->num_cols());
- x.setRandom();
- y.setRandom();
- cuda_x.CopyFromCpu(x);
- cuda_y.CopyFromCpu(y);
- double sum = 0;
- for (auto _ : state) {
- cuda_jacobian.LeftMultiplyAndAccumulate(cuda_x, &cuda_y);
- sum += cuda_y.Norm();
- CHECK_EQ(cudaDeviceSynchronize(), cudaSuccess);
- }
- CHECK_NE(sum, 0.0);
- }
- #endif
- } // namespace ceres::internal
- // Older versions of benchmark library might come without ::benchmark::Shutdown
- // function. We provide an empty fallback variant of Shutdown function in
- // order to support both older and newer versions
- namespace benchmark_shutdown_fallback {
- template <typename... Args>
- void Shutdown(Args... args) {}
- }; // namespace benchmark_shutdown_fallback
- int main(int argc, char** argv) {
- ::benchmark::Initialize(&argc, argv);
- std::vector<std::unique_ptr<ceres::internal::BALData>> benchmark_data;
- if (argc == 1) {
- LOG(FATAL) << "No input datasets specified. Usage: " << argv[0]
- << " [benchmark flags] path_to_BAL_data_1.txt ... "
- "path_to_BAL_data_N.txt";
- return -1;
- }
- ceres::internal::ContextImpl context;
- context.EnsureMinimumThreads(16);
- #ifndef CERES_NO_CUDA
- std::string message;
- context.InitCuda(&message);
- #endif
- for (int i = 1; i < argc; ++i) {
- const std::string path(argv[i]);
- const std::string name_residuals = "Residuals<" + path + ">";
- benchmark_data.emplace_back(
- std::make_unique<ceres::internal::BALData>(path));
- auto data = benchmark_data.back().get();
- ::benchmark::RegisterBenchmark(
- name_residuals.c_str(), ceres::internal::Residuals, data, &context)
- ->Arg(1)
- ->Arg(2)
- ->Arg(4)
- ->Arg(8)
- ->Arg(16);
- const std::string name_jacobians = "ResidualsAndJacobian<" + path + ">";
- ::benchmark::RegisterBenchmark(name_jacobians.c_str(),
- ceres::internal::ResidualsAndJacobian,
- data,
- &context)
- ->Arg(1)
- ->Arg(2)
- ->Arg(4)
- ->Arg(8)
- ->Arg(16);
- const std::string name_plus = "Plus<" + path + ">";
- ::benchmark::RegisterBenchmark(
- name_plus.c_str(), ceres::internal::Plus, data, &context)
- ->Arg(1)
- ->Arg(2)
- ->Arg(4)
- ->Arg(8)
- ->Arg(16);
- const std::string name_right_product =
- "JacobianRightMultiplyAndAccumulate<" + path + ">";
- ::benchmark::RegisterBenchmark(
- name_right_product.c_str(),
- ceres::internal::JacobianRightMultiplyAndAccumulate,
- data,
- &context)
- ->Arg(1)
- ->Arg(2)
- ->Arg(4)
- ->Arg(8)
- ->Arg(16);
- const std::string name_right_product_partitioned_f =
- "PMVRightMultiplyAndAccumulateF<" + path + ">";
- ::benchmark::RegisterBenchmark(
- name_right_product_partitioned_f.c_str(),
- ceres::internal::PMVRightMultiplyAndAccumulateF,
- data,
- &context)
- ->Arg(1)
- ->Arg(2)
- ->Arg(4)
- ->Arg(8)
- ->Arg(16);
- #ifndef CERES_NO_CUDA
- const std::string name_right_product_partitioned_f_cuda =
- "PMVRightMultiplyAndAccumulateFCuda<" + path + ">";
- ::benchmark::RegisterBenchmark(
- name_right_product_partitioned_f_cuda.c_str(),
- ceres::internal::PMVRightMultiplyAndAccumulateFCuda,
- data,
- &context);
- #endif
- const std::string name_right_product_partitioned_e =
- "PMVRightMultiplyAndAccumulateE<" + path + ">";
- ::benchmark::RegisterBenchmark(
- name_right_product_partitioned_e.c_str(),
- ceres::internal::PMVRightMultiplyAndAccumulateE,
- data,
- &context)
- ->Arg(1)
- ->Arg(2)
- ->Arg(4)
- ->Arg(8)
- ->Arg(16);
- #ifndef CERES_NO_CUDA
- const std::string name_right_product_partitioned_e_cuda =
- "PMVRightMultiplyAndAccumulateECuda<" + path + ">";
- ::benchmark::RegisterBenchmark(
- name_right_product_partitioned_e_cuda.c_str(),
- ceres::internal::PMVRightMultiplyAndAccumulateECuda,
- data,
- &context);
- #endif
- const std::string name_update_block_diagonal_ftf =
- "PMVUpdateBlockDiagonalFtF<" + path + ">";
- ::benchmark::RegisterBenchmark(name_update_block_diagonal_ftf.c_str(),
- ceres::internal::PMVUpdateBlockDiagonalFtF,
- data,
- &context)
- ->Arg(1)
- ->Arg(2)
- ->Arg(4)
- ->Arg(8)
- ->Arg(16);
- const std::string name_pse =
- "PSEPreconditionerRightMultiplyAndAccumulate<" + path + ">";
- ::benchmark::RegisterBenchmark(
- name_pse.c_str(), ceres::internal::PSEPreconditioner, data, &context)
- ->Arg(1)
- ->Arg(2)
- ->Arg(4)
- ->Arg(8)
- ->Arg(16);
- const std::string name_isc_no_diag =
- "ISCRightMultiplyAndAccumulate<" + path + ">";
- ::benchmark::RegisterBenchmark(name_isc_no_diag.c_str(),
- ceres::internal::ISCRightMultiplyNoDiag,
- data,
- &context)
- ->Arg(1)
- ->Arg(2)
- ->Arg(4)
- ->Arg(8)
- ->Arg(16);
- const std::string name_update_block_diagonal_ete =
- "PMVUpdateBlockDiagonalEtE<" + path + ">";
- ::benchmark::RegisterBenchmark(name_update_block_diagonal_ete.c_str(),
- ceres::internal::PMVUpdateBlockDiagonalEtE,
- data,
- &context)
- ->Arg(1)
- ->Arg(2)
- ->Arg(4)
- ->Arg(8)
- ->Arg(16);
- const std::string name_isc_diag =
- "ISCRightMultiplyAndAccumulateDiag<" + path + ">";
- ::benchmark::RegisterBenchmark(name_isc_diag.c_str(),
- ceres::internal::ISCRightMultiplyDiag,
- data,
- &context)
- ->Arg(1)
- ->Arg(2)
- ->Arg(4)
- ->Arg(8)
- ->Arg(16);
- #ifndef CERES_NO_CUDA
- const std::string name_right_product_cuda =
- "JacobianRightMultiplyAndAccumulateCuda<" + path + ">";
- ::benchmark::RegisterBenchmark(
- name_right_product_cuda.c_str(),
- ceres::internal::JacobianRightMultiplyAndAccumulateCuda,
- data,
- &context)
- ->Arg(1);
- #endif
- const std::string name_left_product =
- "JacobianLeftMultiplyAndAccumulate<" + path + ">";
- ::benchmark::RegisterBenchmark(
- name_left_product.c_str(),
- ceres::internal::JacobianLeftMultiplyAndAccumulate,
- data,
- &context)
- ->Arg(1)
- ->Arg(2)
- ->Arg(4)
- ->Arg(8)
- ->Arg(16);
- const std::string name_left_product_partitioned_f =
- "PMVLeftMultiplyAndAccumulateF<" + path + ">";
- ::benchmark::RegisterBenchmark(
- name_left_product_partitioned_f.c_str(),
- ceres::internal::PMVLeftMultiplyAndAccumulateF,
- data,
- &context)
- ->Arg(1)
- ->Arg(2)
- ->Arg(4)
- ->Arg(8)
- ->Arg(16);
- #ifndef CERES_NO_CUDA
- const std::string name_left_product_partitioned_f_cuda =
- "PMVLeftMultiplyAndAccumulateFCuda<" + path + ">";
- ::benchmark::RegisterBenchmark(
- name_left_product_partitioned_f_cuda.c_str(),
- ceres::internal::PMVLeftMultiplyAndAccumulateFCuda,
- data,
- &context);
- #endif
- const std::string name_left_product_partitioned_e =
- "PMVLeftMultiplyAndAccumulateE<" + path + ">";
- ::benchmark::RegisterBenchmark(
- name_left_product_partitioned_e.c_str(),
- ceres::internal::PMVLeftMultiplyAndAccumulateE,
- data,
- &context)
- ->Arg(1)
- ->Arg(2)
- ->Arg(4)
- ->Arg(8)
- ->Arg(16);
- #ifndef CERES_NO_CUDA
- const std::string name_left_product_partitioned_e_cuda =
- "PMVLeftMultiplyAndAccumulateECuda<" + path + ">";
- ::benchmark::RegisterBenchmark(
- name_left_product_partitioned_e_cuda.c_str(),
- ceres::internal::PMVLeftMultiplyAndAccumulateECuda,
- data,
- &context);
- #endif
- #ifndef CERES_NO_CUDA
- const std::string name_left_product_cuda =
- "JacobianLeftMultiplyAndAccumulateCuda<" + path + ">";
- ::benchmark::RegisterBenchmark(
- name_left_product_cuda.c_str(),
- ceres::internal::JacobianLeftMultiplyAndAccumulateCuda,
- data,
- &context)
- ->Arg(1);
- #endif
- const std::string name_squared_column_norm =
- "JacobianSquaredColumnNorm<" + path + ">";
- ::benchmark::RegisterBenchmark(name_squared_column_norm.c_str(),
- ceres::internal::JacobianSquaredColumnNorm,
- data,
- &context)
- ->Arg(1)
- ->Arg(2)
- ->Arg(4)
- ->Arg(8)
- ->Arg(16);
- const std::string name_scale_columns = "JacobianScaleColumns<" + path + ">";
- ::benchmark::RegisterBenchmark(name_scale_columns.c_str(),
- ceres::internal::JacobianScaleColumns,
- data,
- &context)
- ->Arg(1)
- ->Arg(2)
- ->Arg(4)
- ->Arg(8)
- ->Arg(16);
- const std::string name_to_crs = "JacobianToCRS<" + path + ">";
- ::benchmark::RegisterBenchmark(
- name_to_crs.c_str(), ceres::internal::JacobianToCRS, data, &context);
- #ifndef CERES_NO_CUDA
- const std::string name_to_crs_view = "JacobianToCRSView<" + path + ">";
- ::benchmark::RegisterBenchmark(name_to_crs_view.c_str(),
- ceres::internal::JacobianToCRSView,
- data,
- &context);
- const std::string name_to_crs_matrix = "JacobianToCRSMatrix<" + path + ">";
- ::benchmark::RegisterBenchmark(name_to_crs_matrix.c_str(),
- ceres::internal::JacobianToCRSMatrix,
- data,
- &context);
- const std::string name_to_crs_view_update =
- "JacobianToCRSViewUpdate<" + path + ">";
- ::benchmark::RegisterBenchmark(name_to_crs_view_update.c_str(),
- ceres::internal::JacobianToCRSViewUpdate,
- data,
- &context);
- const std::string name_to_crs_matrix_update =
- "JacobianToCRSMatrixUpdate<" + path + ">";
- ::benchmark::RegisterBenchmark(name_to_crs_matrix_update.c_str(),
- ceres::internal::JacobianToCRSMatrixUpdate,
- data,
- &context);
- #endif
- }
- ::benchmark::RunSpecifiedBenchmarks();
- using namespace ::benchmark;
- using namespace benchmark_shutdown_fallback;
- Shutdown();
- return 0;
- }
|