123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/dogleg_strategy.h"
- #include <algorithm>
- #include <cmath>
- #include "Eigen/Dense"
- #include "ceres/array_utils.h"
- #include "ceres/internal/eigen.h"
- #include "ceres/linear_least_squares_problems.h"
- #include "ceres/linear_solver.h"
- #include "ceres/polynomial.h"
- #include "ceres/sparse_matrix.h"
- #include "ceres/trust_region_strategy.h"
- #include "ceres/types.h"
- #include "glog/logging.h"
- namespace ceres::internal {
- namespace {
- const double kMaxMu = 1.0;
- const double kMinMu = 1e-8;
- } // namespace
- DoglegStrategy::DoglegStrategy(const TrustRegionStrategy::Options& options)
- : linear_solver_(options.linear_solver),
- radius_(options.initial_radius),
- max_radius_(options.max_radius),
- min_diagonal_(options.min_lm_diagonal),
- max_diagonal_(options.max_lm_diagonal),
- mu_(kMinMu),
- min_mu_(kMinMu),
- max_mu_(kMaxMu),
- mu_increase_factor_(10.0),
- increase_threshold_(0.75),
- decrease_threshold_(0.25),
- dogleg_step_norm_(0.0),
- reuse_(false),
- dogleg_type_(options.dogleg_type) {
- CHECK(linear_solver_ != nullptr);
- CHECK_GT(min_diagonal_, 0.0);
- CHECK_LE(min_diagonal_, max_diagonal_);
- CHECK_GT(max_radius_, 0.0);
- }
- // If the reuse_ flag is not set, then the Cauchy point (scaled
- // gradient) and the new Gauss-Newton step are computed from
- // scratch. The Dogleg step is then computed as interpolation of these
- // two vectors.
- TrustRegionStrategy::Summary DoglegStrategy::ComputeStep(
- const TrustRegionStrategy::PerSolveOptions& per_solve_options,
- SparseMatrix* jacobian,
- const double* residuals,
- double* step) {
- CHECK(jacobian != nullptr);
- CHECK(residuals != nullptr);
- CHECK(step != nullptr);
- const int n = jacobian->num_cols();
- if (reuse_) {
- // Gauss-Newton and gradient vectors are always available, only a
- // new interpolant need to be computed. For the subspace case,
- // the subspace and the two-dimensional model are also still valid.
- switch (dogleg_type_) {
- case TRADITIONAL_DOGLEG:
- ComputeTraditionalDoglegStep(step);
- break;
- case SUBSPACE_DOGLEG:
- ComputeSubspaceDoglegStep(step);
- break;
- }
- TrustRegionStrategy::Summary summary;
- summary.num_iterations = 0;
- summary.termination_type = LinearSolverTerminationType::SUCCESS;
- return summary;
- }
- reuse_ = true;
- // Check that we have the storage needed to hold the various
- // temporary vectors.
- if (diagonal_.rows() != n) {
- diagonal_.resize(n, 1);
- gradient_.resize(n, 1);
- gauss_newton_step_.resize(n, 1);
- }
- // Vector used to form the diagonal matrix that is used to
- // regularize the Gauss-Newton solve and that defines the
- // elliptical trust region
- //
- // || D * step || <= radius_ .
- //
- jacobian->SquaredColumnNorm(diagonal_.data());
- for (int i = 0; i < n; ++i) {
- diagonal_[i] =
- std::min(std::max(diagonal_[i], min_diagonal_), max_diagonal_);
- }
- diagonal_ = diagonal_.array().sqrt();
- ComputeGradient(jacobian, residuals);
- ComputeCauchyPoint(jacobian);
- LinearSolver::Summary linear_solver_summary =
- ComputeGaussNewtonStep(per_solve_options, jacobian, residuals);
- TrustRegionStrategy::Summary summary;
- summary.residual_norm = linear_solver_summary.residual_norm;
- summary.num_iterations = linear_solver_summary.num_iterations;
- summary.termination_type = linear_solver_summary.termination_type;
- if (linear_solver_summary.termination_type ==
- LinearSolverTerminationType::FATAL_ERROR) {
- return summary;
- }
- if (linear_solver_summary.termination_type !=
- LinearSolverTerminationType::FAILURE) {
- switch (dogleg_type_) {
- // Interpolate the Cauchy point and the Gauss-Newton step.
- case TRADITIONAL_DOGLEG:
- ComputeTraditionalDoglegStep(step);
- break;
- // Find the minimum in the subspace defined by the
- // Cauchy point and the (Gauss-)Newton step.
- case SUBSPACE_DOGLEG:
- if (!ComputeSubspaceModel(jacobian)) {
- summary.termination_type = LinearSolverTerminationType::FAILURE;
- break;
- }
- ComputeSubspaceDoglegStep(step);
- break;
- }
- }
- return summary;
- }
- // The trust region is assumed to be elliptical with the
- // diagonal scaling matrix D defined by sqrt(diagonal_).
- // It is implemented by substituting step' = D * step.
- // The trust region for step' is spherical.
- // The gradient, the Gauss-Newton step, the Cauchy point,
- // and all calculations involving the Jacobian have to
- // be adjusted accordingly.
- void DoglegStrategy::ComputeGradient(SparseMatrix* jacobian,
- const double* residuals) {
- gradient_.setZero();
- jacobian->LeftMultiplyAndAccumulate(residuals, gradient_.data());
- gradient_.array() /= diagonal_.array();
- }
- // The Cauchy point is the global minimizer of the quadratic model
- // along the one-dimensional subspace spanned by the gradient.
- void DoglegStrategy::ComputeCauchyPoint(SparseMatrix* jacobian) {
- // alpha * -gradient is the Cauchy point.
- Vector Jg(jacobian->num_rows());
- Jg.setZero();
- // The Jacobian is scaled implicitly by computing J * (D^-1 * (D^-1 * g))
- // instead of (J * D^-1) * (D^-1 * g).
- Vector scaled_gradient = (gradient_.array() / diagonal_.array()).matrix();
- jacobian->RightMultiplyAndAccumulate(scaled_gradient.data(), Jg.data());
- alpha_ = gradient_.squaredNorm() / Jg.squaredNorm();
- }
- // The dogleg step is defined as the intersection of the trust region
- // boundary with the piecewise linear path from the origin to the Cauchy
- // point and then from there to the Gauss-Newton point (global minimizer
- // of the model function). The Gauss-Newton point is taken if it lies
- // within the trust region.
- void DoglegStrategy::ComputeTraditionalDoglegStep(double* dogleg) {
- VectorRef dogleg_step(dogleg, gradient_.rows());
- // Case 1. The Gauss-Newton step lies inside the trust region, and
- // is therefore the optimal solution to the trust-region problem.
- const double gradient_norm = gradient_.norm();
- const double gauss_newton_norm = gauss_newton_step_.norm();
- if (gauss_newton_norm <= radius_) {
- dogleg_step = gauss_newton_step_;
- dogleg_step_norm_ = gauss_newton_norm;
- dogleg_step.array() /= diagonal_.array();
- VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
- << " radius: " << radius_;
- return;
- }
- // Case 2. The Cauchy point and the Gauss-Newton steps lie outside
- // the trust region. Rescale the Cauchy point to the trust region
- // and return.
- if (gradient_norm * alpha_ >= radius_) {
- dogleg_step = -(radius_ / gradient_norm) * gradient_;
- dogleg_step_norm_ = radius_;
- dogleg_step.array() /= diagonal_.array();
- VLOG(3) << "Cauchy step size: " << dogleg_step_norm_
- << " radius: " << radius_;
- return;
- }
- // Case 3. The Cauchy point is inside the trust region and the
- // Gauss-Newton step is outside. Compute the line joining the two
- // points and the point on it which intersects the trust region
- // boundary.
- // a = alpha * -gradient
- // b = gauss_newton_step
- const double b_dot_a = -alpha_ * gradient_.dot(gauss_newton_step_);
- const double a_squared_norm = pow(alpha_ * gradient_norm, 2.0);
- const double b_minus_a_squared_norm =
- a_squared_norm - 2 * b_dot_a + pow(gauss_newton_norm, 2);
- // c = a' (b - a)
- // = alpha * -gradient' gauss_newton_step - alpha^2 |gradient|^2
- const double c = b_dot_a - a_squared_norm;
- const double d = sqrt(c * c + b_minus_a_squared_norm *
- (pow(radius_, 2.0) - a_squared_norm));
- double beta = (c <= 0) ? (d - c) / b_minus_a_squared_norm
- : (radius_ * radius_ - a_squared_norm) / (d + c);
- dogleg_step =
- (-alpha_ * (1.0 - beta)) * gradient_ + beta * gauss_newton_step_;
- dogleg_step_norm_ = dogleg_step.norm();
- dogleg_step.array() /= diagonal_.array();
- VLOG(3) << "Dogleg step size: " << dogleg_step_norm_
- << " radius: " << radius_;
- }
- // The subspace method finds the minimum of the two-dimensional problem
- //
- // min. 1/2 x' B' H B x + g' B x
- // s.t. || B x ||^2 <= r^2
- //
- // where r is the trust region radius and B is the matrix with unit columns
- // spanning the subspace defined by the steepest descent and Newton direction.
- // This subspace by definition includes the Gauss-Newton point, which is
- // therefore taken if it lies within the trust region.
- void DoglegStrategy::ComputeSubspaceDoglegStep(double* dogleg) {
- VectorRef dogleg_step(dogleg, gradient_.rows());
- // The Gauss-Newton point is inside the trust region if |GN| <= radius_.
- // This test is valid even though radius_ is a length in the two-dimensional
- // subspace while gauss_newton_step_ is expressed in the (scaled)
- // higher dimensional original space. This is because
- //
- // 1. gauss_newton_step_ by definition lies in the subspace, and
- // 2. the subspace basis is orthonormal.
- //
- // As a consequence, the norm of the gauss_newton_step_ in the subspace is
- // the same as its norm in the original space.
- const double gauss_newton_norm = gauss_newton_step_.norm();
- if (gauss_newton_norm <= radius_) {
- dogleg_step = gauss_newton_step_;
- dogleg_step_norm_ = gauss_newton_norm;
- dogleg_step.array() /= diagonal_.array();
- VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
- << " radius: " << radius_;
- return;
- }
- // The optimum lies on the boundary of the trust region. The above problem
- // therefore becomes
- //
- // min. 1/2 x^T B^T H B x + g^T B x
- // s.t. || B x ||^2 = r^2
- //
- // Notice the equality in the constraint.
- //
- // This can be solved by forming the Lagrangian, solving for x(y), where
- // y is the Lagrange multiplier, using the gradient of the objective, and
- // putting x(y) back into the constraint. This results in a fourth order
- // polynomial in y, which can be solved using e.g. the companion matrix.
- // See the description of MakePolynomialForBoundaryConstrainedProblem for
- // details. The result is up to four real roots y*, not all of which
- // correspond to feasible points. The feasible points x(y*) have to be
- // tested for optimality.
- if (subspace_is_one_dimensional_) {
- // The subspace is one-dimensional, so both the gradient and
- // the Gauss-Newton step point towards the same direction.
- // In this case, we move along the gradient until we reach the trust
- // region boundary.
- dogleg_step = -(radius_ / gradient_.norm()) * gradient_;
- dogleg_step_norm_ = radius_;
- dogleg_step.array() /= diagonal_.array();
- VLOG(3) << "Dogleg subspace step size (1D): " << dogleg_step_norm_
- << " radius: " << radius_;
- return;
- }
- Vector2d minimum(0.0, 0.0);
- if (!FindMinimumOnTrustRegionBoundary(&minimum)) {
- // For the positive semi-definite case, a traditional dogleg step
- // is taken in this case.
- LOG(WARNING) << "Failed to compute polynomial roots. "
- << "Taking traditional dogleg step instead.";
- ComputeTraditionalDoglegStep(dogleg);
- return;
- }
- // Test first order optimality at the minimum.
- // The first order KKT conditions state that the minimum x*
- // has to satisfy either || x* ||^2 < r^2 (i.e. has to lie within
- // the trust region), or
- //
- // (B x* + g) + y x* = 0
- //
- // for some positive scalar y.
- // Here, as it is already known that the minimum lies on the boundary, the
- // latter condition is tested. To allow for small imprecisions, we test if
- // the angle between (B x* + g) and -x* is smaller than acos(0.99).
- // The exact value of the cosine is arbitrary but should be close to 1.
- //
- // This condition should not be violated. If it is, the minimum was not
- // correctly determined.
- const double kCosineThreshold = 0.99;
- const Vector2d grad_minimum = subspace_B_ * minimum + subspace_g_;
- const double cosine_angle =
- -minimum.dot(grad_minimum) / (minimum.norm() * grad_minimum.norm());
- if (cosine_angle < kCosineThreshold) {
- LOG(WARNING) << "First order optimality seems to be violated "
- << "in the subspace method!\n"
- << "Cosine of angle between x and B x + g is " << cosine_angle
- << ".\n"
- << "Taking a regular dogleg step instead.\n"
- << "Please consider filing a bug report if this "
- << "happens frequently or consistently.\n";
- ComputeTraditionalDoglegStep(dogleg);
- return;
- }
- // Create the full step from the optimal 2d solution.
- dogleg_step = subspace_basis_ * minimum;
- dogleg_step_norm_ = radius_;
- dogleg_step.array() /= diagonal_.array();
- VLOG(3) << "Dogleg subspace step size: " << dogleg_step_norm_
- << " radius: " << radius_;
- }
- // Build the polynomial that defines the optimal Lagrange multipliers.
- // Let the Lagrangian be
- //
- // L(x, y) = 0.5 x^T B x + x^T g + y (0.5 x^T x - 0.5 r^2). (1)
- //
- // Stationary points of the Lagrangian are given by
- //
- // 0 = d L(x, y) / dx = Bx + g + y x (2)
- // 0 = d L(x, y) / dy = 0.5 x^T x - 0.5 r^2 (3)
- //
- // For any given y, we can solve (2) for x as
- //
- // x(y) = -(B + y I)^-1 g . (4)
- //
- // As B + y I is 2x2, we form the inverse explicitly:
- //
- // (B + y I)^-1 = (1 / det(B + y I)) adj(B + y I) (5)
- //
- // where adj() denotes adjugation. This should be safe, as B is positive
- // semi-definite and y is necessarily positive, so (B + y I) is indeed
- // invertible.
- // Plugging (5) into (4) and the result into (3), then dividing by 0.5 we
- // obtain
- //
- // 0 = (1 / det(B + y I))^2 g^T adj(B + y I)^T adj(B + y I) g - r^2
- // (6)
- //
- // or
- //
- // det(B + y I)^2 r^2 = g^T adj(B + y I)^T adj(B + y I) g (7a)
- // = g^T adj(B)^T adj(B) g
- // + 2 y g^T adj(B)^T g + y^2 g^T g (7b)
- //
- // as
- //
- // adj(B + y I) = adj(B) + y I = adj(B)^T + y I . (8)
- //
- // The left hand side can be expressed explicitly using
- //
- // det(B + y I) = det(B) + y tr(B) + y^2 . (9)
- //
- // So (7) is a polynomial in y of degree four.
- // Bringing everything back to the left hand side, the coefficients can
- // be read off as
- //
- // y^4 r^2
- // + y^3 2 r^2 tr(B)
- // + y^2 (r^2 tr(B)^2 + 2 r^2 det(B) - g^T g)
- // + y^1 (2 r^2 det(B) tr(B) - 2 g^T adj(B)^T g)
- // + y^0 (r^2 det(B)^2 - g^T adj(B)^T adj(B) g)
- //
- Vector DoglegStrategy::MakePolynomialForBoundaryConstrainedProblem() const {
- const double detB = subspace_B_.determinant();
- const double trB = subspace_B_.trace();
- const double r2 = radius_ * radius_;
- Matrix2d B_adj;
- // clang-format off
- B_adj << subspace_B_(1, 1) , -subspace_B_(0, 1),
- -subspace_B_(1, 0) , subspace_B_(0, 0);
- // clang-format on
- Vector polynomial(5);
- polynomial(0) = r2;
- polynomial(1) = 2.0 * r2 * trB;
- polynomial(2) = r2 * (trB * trB + 2.0 * detB) - subspace_g_.squaredNorm();
- polynomial(3) =
- -2.0 * (subspace_g_.transpose() * B_adj * subspace_g_ - r2 * detB * trB);
- polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm();
- return polynomial;
- }
- // Given a Lagrange multiplier y that corresponds to a stationary point
- // of the Lagrangian L(x, y), compute the corresponding x from the
- // equation
- //
- // 0 = d L(x, y) / dx
- // = B * x + g + y * x
- // = (B + y * I) * x + g
- //
- DoglegStrategy::Vector2d DoglegStrategy::ComputeSubspaceStepFromRoot(
- double y) const {
- const Matrix2d B_i = subspace_B_ + y * Matrix2d::Identity();
- return -B_i.partialPivLu().solve(subspace_g_);
- }
- // This function evaluates the quadratic model at a point x in the
- // subspace spanned by subspace_basis_.
- double DoglegStrategy::EvaluateSubspaceModel(const Vector2d& x) const {
- return 0.5 * x.dot(subspace_B_ * x) + subspace_g_.dot(x);
- }
- // This function attempts to solve the boundary-constrained subspace problem
- //
- // min. 1/2 x^T B^T H B x + g^T B x
- // s.t. || B x ||^2 = r^2
- //
- // where B is an orthonormal subspace basis and r is the trust-region radius.
- //
- // This is done by finding the roots of a fourth degree polynomial. If the
- // root finding fails, the function returns false and minimum will be set
- // to (0, 0). If it succeeds, true is returned.
- //
- // In the failure case, another step should be taken, such as the traditional
- // dogleg step.
- bool DoglegStrategy::FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const {
- CHECK(minimum != nullptr);
- // Return (0, 0) in all error cases.
- minimum->setZero();
- // Create the fourth-degree polynomial that is a necessary condition for
- // optimality.
- const Vector polynomial = MakePolynomialForBoundaryConstrainedProblem();
- // Find the real parts y_i of its roots (not only the real roots).
- Vector roots_real;
- if (!FindPolynomialRoots(polynomial, &roots_real, nullptr)) {
- // Failed to find the roots of the polynomial, i.e. the candidate
- // solutions of the constrained problem. Report this back to the caller.
- return false;
- }
- // For each root y, compute B x(y) and check for feasibility.
- // Notice that there should always be four roots, as the leading term of
- // the polynomial is r^2 and therefore non-zero. However, as some roots
- // may be complex, the real parts are not necessarily unique.
- double minimum_value = std::numeric_limits<double>::max();
- bool valid_root_found = false;
- for (int i = 0; i < roots_real.size(); ++i) {
- const Vector2d x_i = ComputeSubspaceStepFromRoot(roots_real(i));
- // Not all roots correspond to points on the trust region boundary.
- // There are at most four candidate solutions. As we are interested
- // in the minimum, it is safe to consider all of them after projecting
- // them onto the trust region boundary.
- if (x_i.norm() > 0) {
- const double f_i = EvaluateSubspaceModel((radius_ / x_i.norm()) * x_i);
- valid_root_found = true;
- if (f_i < minimum_value) {
- minimum_value = f_i;
- *minimum = x_i;
- }
- }
- }
- return valid_root_found;
- }
- LinearSolver::Summary DoglegStrategy::ComputeGaussNewtonStep(
- const PerSolveOptions& per_solve_options,
- SparseMatrix* jacobian,
- const double* residuals) {
- const int n = jacobian->num_cols();
- LinearSolver::Summary linear_solver_summary;
- linear_solver_summary.termination_type = LinearSolverTerminationType::FAILURE;
- // The Jacobian matrix is often quite poorly conditioned. Thus it is
- // necessary to add a diagonal matrix at the bottom to prevent the
- // linear solver from failing.
- //
- // We do this by computing the same diagonal matrix as the one used
- // by Levenberg-Marquardt (other choices are possible), and scaling
- // it by a small constant (independent of the trust region radius).
- //
- // If the solve fails, the multiplier to the diagonal is increased
- // up to max_mu_ by a factor of mu_increase_factor_ every time. If
- // the linear solver is still not successful, the strategy returns
- // with LinearSolverTerminationType::FAILURE.
- //
- // Next time when a new Gauss-Newton step is requested, the
- // multiplier starts out from the last successful solve.
- //
- // When a step is declared successful, the multiplier is decreased
- // by half of mu_increase_factor_.
- while (mu_ < max_mu_) {
- // Dogleg, as far as I (sameeragarwal) understand it, requires a
- // reasonably good estimate of the Gauss-Newton step. This means
- // that we need to solve the normal equations more or less
- // exactly. This is reflected in the values of the tolerances set
- // below.
- //
- // For now, this strategy should only be used with exact
- // factorization based solvers, for which these tolerances are
- // automatically satisfied.
- //
- // The right way to combine inexact solves with trust region
- // methods is to use Stiehaug's method.
- LinearSolver::PerSolveOptions solve_options;
- solve_options.q_tolerance = 0.0;
- solve_options.r_tolerance = 0.0;
- lm_diagonal_ = diagonal_ * std::sqrt(mu_);
- solve_options.D = lm_diagonal_.data();
- // As in the LevenbergMarquardtStrategy, solve Jy = r instead
- // of Jx = -r and later set x = -y to avoid having to modify
- // either jacobian or residuals.
- InvalidateArray(n, gauss_newton_step_.data());
- linear_solver_summary = linear_solver_->Solve(
- jacobian, residuals, solve_options, gauss_newton_step_.data());
- if (per_solve_options.dump_format_type == CONSOLE ||
- (per_solve_options.dump_format_type != CONSOLE &&
- !per_solve_options.dump_filename_base.empty())) {
- if (!DumpLinearLeastSquaresProblem(per_solve_options.dump_filename_base,
- per_solve_options.dump_format_type,
- jacobian,
- solve_options.D,
- residuals,
- gauss_newton_step_.data(),
- 0)) {
- LOG(ERROR) << "Unable to dump trust region problem."
- << " Filename base: "
- << per_solve_options.dump_filename_base;
- }
- }
- if (linear_solver_summary.termination_type ==
- LinearSolverTerminationType::FATAL_ERROR) {
- return linear_solver_summary;
- }
- if (linear_solver_summary.termination_type ==
- LinearSolverTerminationType::FAILURE ||
- !IsArrayValid(n, gauss_newton_step_.data())) {
- mu_ *= mu_increase_factor_;
- VLOG(2) << "Increasing mu " << mu_;
- linear_solver_summary.termination_type =
- LinearSolverTerminationType::FAILURE;
- continue;
- }
- break;
- }
- if (linear_solver_summary.termination_type !=
- LinearSolverTerminationType::FAILURE) {
- // The scaled Gauss-Newton step is D * GN:
- //
- // - (D^-1 J^T J D^-1)^-1 (D^-1 g)
- // = - D (J^T J)^-1 D D^-1 g
- // = D -(J^T J)^-1 g
- //
- gauss_newton_step_.array() *= -diagonal_.array();
- }
- return linear_solver_summary;
- }
- void DoglegStrategy::StepAccepted(double step_quality) {
- CHECK_GT(step_quality, 0.0);
- if (step_quality < decrease_threshold_) {
- radius_ *= 0.5;
- }
- if (step_quality > increase_threshold_) {
- radius_ = std::max(radius_, 3.0 * dogleg_step_norm_);
- }
- // Reduce the regularization multiplier, in the hope that whatever
- // was causing the rank deficiency has gone away and we can return
- // to doing a pure Gauss-Newton solve.
- mu_ = std::max(min_mu_, 2.0 * mu_ / mu_increase_factor_);
- reuse_ = false;
- }
- void DoglegStrategy::StepRejected(double /*step_quality*/) {
- radius_ *= 0.5;
- reuse_ = true;
- }
- void DoglegStrategy::StepIsInvalid() {
- mu_ *= mu_increase_factor_;
- reuse_ = false;
- }
- double DoglegStrategy::Radius() const { return radius_; }
- bool DoglegStrategy::ComputeSubspaceModel(SparseMatrix* jacobian) {
- // Compute an orthogonal basis for the subspace using QR decomposition.
- Matrix basis_vectors(jacobian->num_cols(), 2);
- basis_vectors.col(0) = gradient_;
- basis_vectors.col(1) = gauss_newton_step_;
- Eigen::ColPivHouseholderQR<Matrix> basis_qr(basis_vectors);
- switch (basis_qr.rank()) {
- case 0:
- // This should never happen, as it implies that both the gradient
- // and the Gauss-Newton step are zero. In this case, the minimizer should
- // have stopped due to the gradient being too small.
- LOG(ERROR) << "Rank of subspace basis is 0. "
- << "This means that the gradient at the current iterate is "
- << "zero but the optimization has not been terminated. "
- << "You may have found a bug in Ceres.";
- return false;
- case 1:
- // Gradient and Gauss-Newton step coincide, so we lie on one of the
- // major axes of the quadratic problem. In this case, we simply move
- // along the gradient until we reach the trust region boundary.
- subspace_is_one_dimensional_ = true;
- return true;
- case 2:
- subspace_is_one_dimensional_ = false;
- break;
- default:
- LOG(ERROR) << "Rank of the subspace basis matrix is reported to be "
- << "greater than 2. As the matrix contains only two "
- << "columns this cannot be true and is indicative of "
- << "a bug.";
- return false;
- }
- // The subspace is two-dimensional, so compute the subspace model.
- // Given the basis U, this is
- //
- // subspace_g_ = g_scaled^T U
- //
- // and
- //
- // subspace_B_ = U^T (J_scaled^T J_scaled) U
- //
- // As J_scaled = J * D^-1, the latter becomes
- //
- // subspace_B_ = ((U^T D^-1) J^T) (J (D^-1 U))
- // = (J (D^-1 U))^T (J (D^-1 U))
- subspace_basis_ =
- basis_qr.householderQ() * Matrix::Identity(jacobian->num_cols(), 2);
- subspace_g_ = subspace_basis_.transpose() * gradient_;
- Eigen::Matrix<double, 2, Eigen::Dynamic, Eigen::RowMajor> Jb(
- 2, jacobian->num_rows());
- Jb.setZero();
- Vector tmp;
- tmp = (subspace_basis_.col(0).array() / diagonal_.array()).matrix();
- jacobian->RightMultiplyAndAccumulate(tmp.data(), Jb.row(0).data());
- tmp = (subspace_basis_.col(1).array() / diagonal_.array()).matrix();
- jacobian->RightMultiplyAndAccumulate(tmp.data(), Jb.row(1).data());
- subspace_B_ = Jb * Jb.transpose();
- return true;
- }
- } // namespace ceres::internal
|