123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include <memory>
- #include "ceres/casts.h"
- #include "ceres/context_impl.h"
- #include "ceres/internal/config.h"
- #include "ceres/linear_least_squares_problems.h"
- #include "ceres/linear_solver.h"
- #include "ceres/triplet_sparse_matrix.h"
- #include "ceres/types.h"
- #include "glog/logging.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- using Param = ::testing::
- tuple<LinearSolverType, DenseLinearAlgebraLibraryType, bool, int>;
- static std::string ParamInfoToString(testing::TestParamInfo<Param> info) {
- Param param = info.param;
- std::stringstream ss;
- ss << LinearSolverTypeToString(::testing::get<0>(param)) << "_"
- << DenseLinearAlgebraLibraryTypeToString(::testing::get<1>(param)) << "_"
- << (::testing::get<2>(param) ? "Regularized" : "Unregularized") << "_"
- << ::testing::get<3>(param);
- return ss.str();
- }
- class DenseLinearSolverTest : public ::testing::TestWithParam<Param> {};
- TEST_P(DenseLinearSolverTest, _) {
- Param param = GetParam();
- const bool regularized = testing::get<2>(param);
- std::unique_ptr<LinearLeastSquaresProblem> problem =
- CreateLinearLeastSquaresProblemFromId(testing::get<3>(param));
- DenseSparseMatrix lhs(*down_cast<TripletSparseMatrix*>(problem->A.get()));
- const int num_cols = lhs.num_cols();
- const int num_rows = lhs.num_rows();
- Vector rhs = Vector::Zero(num_rows + num_cols);
- rhs.head(num_rows) = ConstVectorRef(problem->b.get(), num_rows);
- LinearSolver::Options options;
- options.type = ::testing::get<0>(param);
- options.dense_linear_algebra_library_type = ::testing::get<1>(param);
- ContextImpl context;
- options.context = &context;
- std::unique_ptr<LinearSolver> solver(LinearSolver::Create(options));
- LinearSolver::PerSolveOptions per_solve_options;
- if (regularized) {
- per_solve_options.D = problem->D.get();
- }
- Vector solution(num_cols);
- LinearSolver::Summary summary =
- solver->Solve(&lhs, rhs.data(), per_solve_options, solution.data());
- EXPECT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS);
- Vector normal_rhs = lhs.matrix().transpose() * rhs.head(num_rows);
- Matrix normal_lhs = lhs.matrix().transpose() * lhs.matrix();
- if (regularized) {
- ConstVectorRef diagonal(problem->D.get(), num_cols);
- normal_lhs += diagonal.array().square().matrix().asDiagonal();
- }
- Vector actual_normal_rhs = normal_lhs * solution;
- const double normalized_residual =
- (normal_rhs - actual_normal_rhs).norm() / normal_rhs.norm();
- EXPECT_NEAR(
- normalized_residual, 0.0, 10 * std::numeric_limits<double>::epsilon())
- << "\nexpected: " << normal_rhs.transpose()
- << "\nactual: " << actual_normal_rhs.transpose();
- }
- namespace {
- // TODO(sameeragarwal): Should we move away from hard coded linear
- // least squares problem to randomly generated ones?
- #ifndef CERES_NO_LAPACK
- INSTANTIATE_TEST_SUITE_P(
- DenseLinearSolver,
- DenseLinearSolverTest,
- ::testing::Combine(::testing::Values(DENSE_QR, DENSE_NORMAL_CHOLESKY),
- ::testing::Values(EIGEN, LAPACK),
- ::testing::Values(true, false),
- ::testing::Values(0, 1)),
- ParamInfoToString);
- #else
- INSTANTIATE_TEST_SUITE_P(
- DenseLinearSolver,
- DenseLinearSolverTest,
- ::testing::Combine(::testing::Values(DENSE_QR, DENSE_NORMAL_CHOLESKY),
- ::testing::Values(EIGEN),
- ::testing::Values(true, false),
- ::testing::Values(0, 1)),
- ParamInfoToString);
- #endif
- } // namespace
- } // namespace ceres::internal
|