123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Authors: sameeragarwal@google.com (Sameer Agarwal)
- #include "Eigen/Dense"
- #include "benchmark/benchmark.h"
- #include "ceres/context_impl.h"
- #include "ceres/dense_sparse_matrix.h"
- #include "ceres/internal/config.h"
- #include "ceres/linear_solver.h"
- namespace ceres::internal {
- template <ceres::DenseLinearAlgebraLibraryType kLibraryType,
- ceres::LinearSolverType kSolverType>
- static void BM_DenseSolver(benchmark::State& state) {
- const int num_rows = static_cast<int>(state.range(0));
- const int num_cols = static_cast<int>(state.range(1));
- DenseSparseMatrix jacobian(num_rows, num_cols);
- *jacobian.mutable_matrix() = Eigen::MatrixXd::Random(num_rows, num_cols);
- Eigen::VectorXd rhs = Eigen::VectorXd::Random(num_rows, 1);
- Eigen::VectorXd solution(num_cols);
- LinearSolver::Options options;
- options.type = kSolverType;
- options.dense_linear_algebra_library_type = kLibraryType;
- ContextImpl context;
- options.context = &context;
- auto solver = LinearSolver::Create(options);
- LinearSolver::PerSolveOptions per_solve_options;
- Eigen::VectorXd diagonal = Eigen::VectorXd::Ones(num_cols) * 100;
- per_solve_options.D = diagonal.data();
- for (auto _ : state) {
- solver->Solve(&jacobian, rhs.data(), per_solve_options, solution.data());
- }
- }
- // Some reasonable matrix sizes. I picked them out of thin air.
- static void MatrixSizes(benchmark::internal::Benchmark* b) {
- // {num_rows, num_cols}
- b->Args({1, 1});
- b->Args({2, 1});
- b->Args({3, 1});
- b->Args({6, 2});
- b->Args({10, 3});
- b->Args({12, 4});
- b->Args({20, 5});
- b->Args({40, 5});
- b->Args({100, 10});
- b->Args({150, 15});
- b->Args({200, 16});
- b->Args({225, 18});
- b->Args({300, 20});
- b->Args({400, 20});
- b->Args({600, 22});
- b->Args({800, 25});
- }
- BENCHMARK_TEMPLATE2(BM_DenseSolver, ceres::EIGEN, ceres::DENSE_QR)
- ->Apply(MatrixSizes);
- BENCHMARK_TEMPLATE2(BM_DenseSolver, ceres::EIGEN, ceres::DENSE_NORMAL_CHOLESKY)
- ->Apply(MatrixSizes);
- #ifndef CERES_NO_LAPACK
- BENCHMARK_TEMPLATE2(BM_DenseSolver, ceres::LAPACK, ceres::DENSE_QR)
- ->Apply(MatrixSizes);
- BENCHMARK_TEMPLATE2(BM_DenseSolver, ceres::LAPACK, ceres::DENSE_NORMAL_CHOLESKY)
- ->Apply(MatrixSizes);
- #endif // CERES_NO_LAPACK
- #ifndef CERES_NO_CUDA
- BENCHMARK_TEMPLATE2(BM_DenseSolver, ceres::CUDA, ceres::DENSE_NORMAL_CHOLESKY)
- ->Apply(MatrixSizes);
- BENCHMARK_TEMPLATE2(BM_DenseSolver, ceres::CUDA, ceres::DENSE_QR)
- ->Apply(MatrixSizes);
- #endif // CERES_NO_CUDA
- } // namespace ceres::internal
- BENCHMARK_MAIN();
|