123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: joydeepb@cs.utexas.edu (Joydeep Biswas)
- //
- // A simple CUDA vector class.
- #ifndef CERES_INTERNAL_CUDA_VECTOR_H_
- #define CERES_INTERNAL_CUDA_VECTOR_H_
- // This include must come before any #ifndef check on Ceres compile options.
- // clang-format off
- #include "ceres/internal/config.h"
- // clang-format on
- #include <math.h>
- #include <memory>
- #include <string>
- #include "ceres/context_impl.h"
- #include "ceres/internal/export.h"
- #include "ceres/types.h"
- #ifndef CERES_NO_CUDA
- #include "ceres/cuda_buffer.h"
- #include "ceres/cuda_kernels_vector_ops.h"
- #include "ceres/internal/eigen.h"
- #include "cublas_v2.h"
- #include "cusparse.h"
- namespace ceres::internal {
- // An Nx1 vector, denoted y hosted on the GPU, with CUDA-accelerated operations.
- class CERES_NO_EXPORT CudaVector {
- public:
- // Create a pre-allocated vector of size N and return a pointer to it. The
- // caller must ensure that InitCuda() has already been successfully called on
- // context before calling this method.
- CudaVector(ContextImpl* context, int size);
- CudaVector(CudaVector&& other);
- ~CudaVector();
- void Resize(int size);
- // Perform a deep copy of the vector.
- CudaVector& operator=(const CudaVector&);
- // Return the inner product x' * y.
- double Dot(const CudaVector& x) const;
- // Return the L2 norm of the vector (||y||_2).
- double Norm() const;
- // Set all elements to zero.
- void SetZero();
- // Copy from Eigen vector.
- void CopyFromCpu(const Vector& x);
- // Copy from CPU memory array.
- void CopyFromCpu(const double* x);
- // Copy to Eigen vector.
- void CopyTo(Vector* x) const;
- // Copy to CPU memory array. It is the caller's responsibility to ensure
- // that the array is large enough.
- void CopyTo(double* x) const;
- // y = a * x + b * y.
- void Axpby(double a, const CudaVector& x, double b);
- // y = diag(d)' * diag(d) * x + y.
- void DtDxpy(const CudaVector& D, const CudaVector& x);
- // y = s * y.
- void Scale(double s);
- int num_rows() const { return num_rows_; }
- int num_cols() const { return 1; }
- const double* data() const { return data_.data(); }
- double* mutable_data() { return data_.data(); }
- const cusparseDnVecDescr_t& descr() const { return descr_; }
- private:
- CudaVector(const CudaVector&) = delete;
- void DestroyDescriptor();
- int num_rows_ = 0;
- ContextImpl* context_ = nullptr;
- CudaBuffer<double> data_;
- // CuSparse object that describes this dense vector.
- cusparseDnVecDescr_t descr_ = nullptr;
- };
- // Blas1 operations on Cuda vectors. These functions are needed as an
- // abstraction layer so that we can use different versions of a vector style
- // object in the conjugate gradients linear solver.
- // Context and num_threads arguments are not used by CUDA implementation,
- // context embedded into CudaVector is used instead.
- inline double Norm(const CudaVector& x,
- ContextImpl* context = nullptr,
- int num_threads = 1) {
- (void)context;
- (void)num_threads;
- return x.Norm();
- }
- inline void SetZero(CudaVector& x,
- ContextImpl* context = nullptr,
- int num_threads = 1) {
- (void)context;
- (void)num_threads;
- x.SetZero();
- }
- inline void Axpby(double a,
- const CudaVector& x,
- double b,
- const CudaVector& y,
- CudaVector& z,
- ContextImpl* context = nullptr,
- int num_threads = 1) {
- (void)context;
- (void)num_threads;
- if (&x == &y && &y == &z) {
- // z = (a + b) * z;
- z.Scale(a + b);
- } else if (&x == &z) {
- // x is aliased to z.
- // z = x
- // = b * y + a * x;
- z.Axpby(b, y, a);
- } else if (&y == &z) {
- // y is aliased to z.
- // z = y = a * x + b * y;
- z.Axpby(a, x, b);
- } else {
- // General case: all inputs and outputs are distinct.
- z = y;
- z.Axpby(a, x, b);
- }
- }
- inline double Dot(const CudaVector& x,
- const CudaVector& y,
- ContextImpl* context = nullptr,
- int num_threads = 1) {
- (void)context;
- (void)num_threads;
- return x.Dot(y);
- }
- inline void Copy(const CudaVector& from,
- CudaVector& to,
- ContextImpl* context = nullptr,
- int num_threads = 1) {
- (void)context;
- (void)num_threads;
- to = from;
- }
- } // namespace ceres::internal
- #endif // CERES_NO_CUDA
- #endif // CERES_INTERNAL_CUDA_SPARSE_LINEAR_OPERATOR_H_
|