cuda_kernels_vector_ops.h 3.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283
  1. // Ceres Solver - A fast non-linear least squares minimizer
  2. // Copyright 2023 Google Inc. All rights reserved.
  3. // http://ceres-solver.org/
  4. //
  5. // Redistribution and use in source and binary forms, with or without
  6. // modification, are permitted provided that the following conditions are met:
  7. //
  8. // * Redistributions of source code must retain the above copyright notice,
  9. // this list of conditions and the following disclaimer.
  10. // * Redistributions in binary form must reproduce the above copyright notice,
  11. // this list of conditions and the following disclaimer in the documentation
  12. // and/or other materials provided with the distribution.
  13. // * Neither the name of Google Inc. nor the names of its contributors may be
  14. // used to endorse or promote products derived from this software without
  15. // specific prior written permission.
  16. //
  17. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  18. // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  19. // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  20. // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  21. // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  22. // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  23. // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  24. // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  25. // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  26. // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  27. // POSSIBILITY OF SUCH DAMAGE.
  28. //
  29. // Author: joydeepb@cs.utexas.edu (Joydeep Biswas)
  30. #ifndef CERES_INTERNAL_CUDA_KERNELS_VECTOR_OPS_H_
  31. #define CERES_INTERNAL_CUDA_KERNELS_VECTOR_OPS_H_
  32. #include "ceres/internal/config.h"
  33. #ifndef CERES_NO_CUDA
  34. #include "cuda_runtime.h"
  35. namespace ceres {
  36. namespace internal {
  37. class Block;
  38. class Cell;
  39. // Convert an array of double (FP64) values to float (FP32). Both arrays must
  40. // already be on GPU memory.
  41. void CudaFP64ToFP32(const double* input,
  42. float* output,
  43. const int size,
  44. cudaStream_t stream);
  45. // Convert an array of float (FP32) values to double (FP64). Both arrays must
  46. // already be on GPU memory.
  47. void CudaFP32ToFP64(const float* input,
  48. double* output,
  49. const int size,
  50. cudaStream_t stream);
  51. // Set all elements of the array to the FP32 value 0. The array must be in GPU
  52. // memory.
  53. void CudaSetZeroFP32(float* output, const int size, cudaStream_t stream);
  54. // Set all elements of the array to the FP64 value 0. The array must be in GPU
  55. // memory.
  56. void CudaSetZeroFP64(double* output, const int size, cudaStream_t stream);
  57. // Compute x = x + double(y). Input array is float (FP32), output array is
  58. // double (FP64). Both arrays must already be on GPU memory.
  59. void CudaDsxpy(double* x, float* y, const int size, cudaStream_t stream);
  60. // Compute y[i] = y[i] + d[i]^2 x[i]. All arrays must already be on GPU memory.
  61. void CudaDtDxpy(double* y,
  62. const double* D,
  63. const double* x,
  64. const int size,
  65. cudaStream_t stream);
  66. } // namespace internal
  67. } // namespace ceres
  68. #endif // CERES_NO_CUDA
  69. #endif // CERES_INTERNAL_CUDA_KERNELS_VECTOR_OPS_H_