123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: joydeepb@cs.utexas.edu (Joydeep Biswas)
- #include <string>
- #include "ceres/dense_cholesky.h"
- #include "ceres/internal/config.h"
- #include "ceres/internal/eigen.h"
- #include "glog/logging.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- #ifndef CERES_NO_CUDA
- TEST(CUDADenseCholesky, InvalidOptionOnCreate) {
- LinearSolver::Options options;
- ContextImpl context;
- options.context = &context;
- std::string error;
- EXPECT_TRUE(context.InitCuda(&error)) << error;
- auto dense_cuda_solver = CUDADenseCholesky::Create(options);
- EXPECT_EQ(dense_cuda_solver, nullptr);
- }
- // Tests the CUDA Cholesky solver with a simple 4x4 matrix.
- TEST(CUDADenseCholesky, Cholesky4x4Matrix) {
- Eigen::Matrix4d A;
- // clang-format off
- A << 4, 12, -16, 0,
- 12, 37, -43, 0,
- -16, -43, 98, 0,
- 0, 0, 0, 1;
- // clang-format on
- Vector b = Eigen::Vector4d::Ones();
- LinearSolver::Options options;
- ContextImpl context;
- options.context = &context;
- std::string error;
- EXPECT_TRUE(context.InitCuda(&error)) << error;
- options.dense_linear_algebra_library_type = CUDA;
- auto dense_cuda_solver = CUDADenseCholesky::Create(options);
- ASSERT_NE(dense_cuda_solver, nullptr);
- std::string error_string;
- ASSERT_EQ(dense_cuda_solver->Factorize(A.cols(), A.data(), &error_string),
- LinearSolverTerminationType::SUCCESS);
- Eigen::Vector4d x = Eigen::Vector4d::Zero();
- ASSERT_EQ(dense_cuda_solver->Solve(b.data(), x.data(), &error_string),
- LinearSolverTerminationType::SUCCESS);
- static const double kEpsilon = std::numeric_limits<double>::epsilon() * 10;
- const Eigen::Vector4d x_expected(113.75 / 3.0, -31.0 / 3.0, 5.0 / 3.0, 1.0);
- EXPECT_NEAR((x[0] - x_expected[0]) / x_expected[0], 0.0, kEpsilon);
- EXPECT_NEAR((x[1] - x_expected[1]) / x_expected[1], 0.0, kEpsilon);
- EXPECT_NEAR((x[2] - x_expected[2]) / x_expected[2], 0.0, kEpsilon);
- EXPECT_NEAR((x[3] - x_expected[3]) / x_expected[3], 0.0, kEpsilon);
- }
- TEST(CUDADenseCholesky, SingularMatrix) {
- Eigen::Matrix3d A;
- // clang-format off
- A << 1, 0, 0,
- 0, 1, 0,
- 0, 0, 0;
- // clang-format on
- LinearSolver::Options options;
- ContextImpl context;
- options.context = &context;
- std::string error;
- EXPECT_TRUE(context.InitCuda(&error)) << error;
- options.dense_linear_algebra_library_type = CUDA;
- auto dense_cuda_solver = CUDADenseCholesky::Create(options);
- ASSERT_NE(dense_cuda_solver, nullptr);
- std::string error_string;
- ASSERT_EQ(dense_cuda_solver->Factorize(A.cols(), A.data(), &error_string),
- LinearSolverTerminationType::FAILURE);
- }
- TEST(CUDADenseCholesky, NegativeMatrix) {
- Eigen::Matrix3d A;
- // clang-format off
- A << 1, 0, 0,
- 0, 1, 0,
- 0, 0, -1;
- // clang-format on
- LinearSolver::Options options;
- ContextImpl context;
- options.context = &context;
- std::string error;
- EXPECT_TRUE(context.InitCuda(&error)) << error;
- options.dense_linear_algebra_library_type = CUDA;
- auto dense_cuda_solver = CUDADenseCholesky::Create(options);
- ASSERT_NE(dense_cuda_solver, nullptr);
- std::string error_string;
- ASSERT_EQ(dense_cuda_solver->Factorize(A.cols(), A.data(), &error_string),
- LinearSolverTerminationType::FAILURE);
- }
- TEST(CUDADenseCholesky, MustFactorizeBeforeSolve) {
- const Eigen::Vector3d b = Eigen::Vector3d::Ones();
- LinearSolver::Options options;
- ContextImpl context;
- options.context = &context;
- std::string error;
- EXPECT_TRUE(context.InitCuda(&error)) << error;
- options.dense_linear_algebra_library_type = CUDA;
- auto dense_cuda_solver = CUDADenseCholesky::Create(options);
- ASSERT_NE(dense_cuda_solver, nullptr);
- std::string error_string;
- ASSERT_EQ(dense_cuda_solver->Solve(b.data(), nullptr, &error_string),
- LinearSolverTerminationType::FATAL_ERROR);
- }
- TEST(CUDADenseCholesky, Randomized1600x1600Tests) {
- const int kNumCols = 1600;
- using LhsType = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>;
- using RhsType = Eigen::Matrix<double, Eigen::Dynamic, 1>;
- using SolutionType = Eigen::Matrix<double, Eigen::Dynamic, 1>;
- LinearSolver::Options options;
- ContextImpl context;
- options.context = &context;
- std::string error;
- EXPECT_TRUE(context.InitCuda(&error)) << error;
- options.dense_linear_algebra_library_type = ceres::CUDA;
- std::unique_ptr<DenseCholesky> dense_cholesky =
- CUDADenseCholesky::Create(options);
- const int kNumTrials = 20;
- for (int i = 0; i < kNumTrials; ++i) {
- LhsType lhs = LhsType::Random(kNumCols, kNumCols);
- lhs = lhs.transpose() * lhs;
- lhs += 1e-3 * LhsType::Identity(kNumCols, kNumCols);
- SolutionType x_expected = SolutionType::Random(kNumCols);
- RhsType rhs = lhs * x_expected;
- SolutionType x_computed = SolutionType::Zero(kNumCols);
- // Sanity check the random matrix sizes.
- EXPECT_EQ(lhs.rows(), kNumCols);
- EXPECT_EQ(lhs.cols(), kNumCols);
- EXPECT_EQ(rhs.rows(), kNumCols);
- EXPECT_EQ(rhs.cols(), 1);
- EXPECT_EQ(x_expected.rows(), kNumCols);
- EXPECT_EQ(x_expected.cols(), 1);
- EXPECT_EQ(x_computed.rows(), kNumCols);
- EXPECT_EQ(x_computed.cols(), 1);
- LinearSolver::Summary summary;
- summary.termination_type = dense_cholesky->FactorAndSolve(
- kNumCols, lhs.data(), rhs.data(), x_computed.data(), &summary.message);
- ASSERT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS);
- static const double kEpsilon = std::numeric_limits<double>::epsilon() * 3e5;
- ASSERT_NEAR(
- (x_computed - x_expected).norm() / x_expected.norm(), 0.0, kEpsilon);
- }
- }
- TEST(CUDADenseCholeskyMixedPrecision, InvalidOptionsOnCreate) {
- {
- // Did not ask for CUDA, and did not ask for mixed precision.
- LinearSolver::Options options;
- ContextImpl context;
- options.context = &context;
- std::string error;
- EXPECT_TRUE(context.InitCuda(&error)) << error;
- auto solver = CUDADenseCholeskyMixedPrecision::Create(options);
- ASSERT_EQ(solver, nullptr);
- }
- {
- // Asked for CUDA, but did not ask for mixed precision.
- LinearSolver::Options options;
- ContextImpl context;
- options.context = &context;
- std::string error;
- EXPECT_TRUE(context.InitCuda(&error)) << error;
- options.dense_linear_algebra_library_type = ceres::CUDA;
- auto solver = CUDADenseCholeskyMixedPrecision::Create(options);
- ASSERT_EQ(solver, nullptr);
- }
- }
- // Tests the CUDA Cholesky solver with a simple 4x4 matrix.
- TEST(CUDADenseCholeskyMixedPrecision, Cholesky4x4Matrix1Step) {
- Eigen::Matrix4d A;
- // clang-format off
- // A common test Cholesky decomposition test matrix, see :
- // https://en.wikipedia.org/w/index.php?title=Cholesky_decomposition&oldid=1080607368#Example
- A << 4, 12, -16, 0,
- 12, 37, -43, 0,
- -16, -43, 98, 0,
- 0, 0, 0, 1;
- // clang-format on
- const Eigen::Vector4d b = Eigen::Vector4d::Ones();
- LinearSolver::Options options;
- options.max_num_refinement_iterations = 0;
- ContextImpl context;
- options.context = &context;
- std::string error;
- EXPECT_TRUE(context.InitCuda(&error)) << error;
- options.dense_linear_algebra_library_type = CUDA;
- options.use_mixed_precision_solves = true;
- auto solver = CUDADenseCholeskyMixedPrecision::Create(options);
- ASSERT_NE(solver, nullptr);
- std::string error_string;
- ASSERT_EQ(solver->Factorize(A.cols(), A.data(), &error_string),
- LinearSolverTerminationType::SUCCESS);
- Eigen::Vector4d x = Eigen::Vector4d::Zero();
- ASSERT_EQ(solver->Solve(b.data(), x.data(), &error_string),
- LinearSolverTerminationType::SUCCESS);
- // A single step of the mixed precision solver will be equivalent to solving
- // in low precision (FP32). Hence the tolerance is defined w.r.t. FP32 epsilon
- // instead of FP64 epsilon.
- static const double kEpsilon = std::numeric_limits<float>::epsilon() * 10;
- const Eigen::Vector4d x_expected(113.75 / 3.0, -31.0 / 3.0, 5.0 / 3.0, 1.0);
- EXPECT_NEAR((x[0] - x_expected[0]) / x_expected[0], 0.0, kEpsilon);
- EXPECT_NEAR((x[1] - x_expected[1]) / x_expected[1], 0.0, kEpsilon);
- EXPECT_NEAR((x[2] - x_expected[2]) / x_expected[2], 0.0, kEpsilon);
- EXPECT_NEAR((x[3] - x_expected[3]) / x_expected[3], 0.0, kEpsilon);
- }
- // Tests the CUDA Cholesky solver with a simple 4x4 matrix.
- TEST(CUDADenseCholeskyMixedPrecision, Cholesky4x4Matrix4Steps) {
- Eigen::Matrix4d A;
- // clang-format off
- A << 4, 12, -16, 0,
- 12, 37, -43, 0,
- -16, -43, 98, 0,
- 0, 0, 0, 1;
- // clang-format on
- const Eigen::Vector4d b = Eigen::Vector4d::Ones();
- LinearSolver::Options options;
- options.max_num_refinement_iterations = 3;
- ContextImpl context;
- options.context = &context;
- std::string error;
- EXPECT_TRUE(context.InitCuda(&error)) << error;
- options.dense_linear_algebra_library_type = CUDA;
- options.use_mixed_precision_solves = true;
- auto solver = CUDADenseCholeskyMixedPrecision::Create(options);
- ASSERT_NE(solver, nullptr);
- std::string error_string;
- ASSERT_EQ(solver->Factorize(A.cols(), A.data(), &error_string),
- LinearSolverTerminationType::SUCCESS);
- Eigen::Vector4d x = Eigen::Vector4d::Zero();
- ASSERT_EQ(solver->Solve(b.data(), x.data(), &error_string),
- LinearSolverTerminationType::SUCCESS);
- // The error does not reduce beyond four iterations, and stagnates at this
- // level of precision.
- static const double kEpsilon = std::numeric_limits<double>::epsilon() * 100;
- const Eigen::Vector4d x_expected(113.75 / 3.0, -31.0 / 3.0, 5.0 / 3.0, 1.0);
- EXPECT_NEAR((x[0] - x_expected[0]) / x_expected[0], 0.0, kEpsilon);
- EXPECT_NEAR((x[1] - x_expected[1]) / x_expected[1], 0.0, kEpsilon);
- EXPECT_NEAR((x[2] - x_expected[2]) / x_expected[2], 0.0, kEpsilon);
- EXPECT_NEAR((x[3] - x_expected[3]) / x_expected[3], 0.0, kEpsilon);
- }
- TEST(CUDADenseCholeskyMixedPrecision, Randomized1600x1600Tests) {
- const int kNumCols = 1600;
- using LhsType = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>;
- using RhsType = Eigen::Matrix<double, Eigen::Dynamic, 1>;
- using SolutionType = Eigen::Matrix<double, Eigen::Dynamic, 1>;
- LinearSolver::Options options;
- ContextImpl context;
- options.context = &context;
- std::string error;
- EXPECT_TRUE(context.InitCuda(&error)) << error;
- options.dense_linear_algebra_library_type = ceres::CUDA;
- options.use_mixed_precision_solves = true;
- options.max_num_refinement_iterations = 20;
- std::unique_ptr<CUDADenseCholeskyMixedPrecision> dense_cholesky =
- CUDADenseCholeskyMixedPrecision::Create(options);
- const int kNumTrials = 20;
- for (int i = 0; i < kNumTrials; ++i) {
- LhsType lhs = LhsType::Random(kNumCols, kNumCols);
- lhs = lhs.transpose() * lhs;
- lhs += 1e-3 * LhsType::Identity(kNumCols, kNumCols);
- SolutionType x_expected = SolutionType::Random(kNumCols);
- RhsType rhs = lhs * x_expected;
- SolutionType x_computed = SolutionType::Zero(kNumCols);
- // Sanity check the random matrix sizes.
- EXPECT_EQ(lhs.rows(), kNumCols);
- EXPECT_EQ(lhs.cols(), kNumCols);
- EXPECT_EQ(rhs.rows(), kNumCols);
- EXPECT_EQ(rhs.cols(), 1);
- EXPECT_EQ(x_expected.rows(), kNumCols);
- EXPECT_EQ(x_expected.cols(), 1);
- EXPECT_EQ(x_computed.rows(), kNumCols);
- EXPECT_EQ(x_computed.cols(), 1);
- LinearSolver::Summary summary;
- summary.termination_type = dense_cholesky->FactorAndSolve(
- kNumCols, lhs.data(), rhs.data(), x_computed.data(), &summary.message);
- ASSERT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS);
- static const double kEpsilon = std::numeric_limits<double>::epsilon() * 1e6;
- ASSERT_NEAR(
- (x_computed - x_expected).norm() / x_expected.norm(), 0.0, kEpsilon);
- }
- }
- #endif // CERES_NO_CUDA
- } // namespace ceres::internal
|