123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: joydeepb@cs.utexas.edu (Joydeep Biswas)
- #ifndef CERES_INTERNAL_CUDA_BUFFER_H_
- #define CERES_INTERNAL_CUDA_BUFFER_H_
- #include "ceres/context_impl.h"
- #include "ceres/internal/config.h"
- #ifndef CERES_NO_CUDA
- #include <vector>
- #include "cuda_runtime.h"
- #include "glog/logging.h"
- namespace ceres::internal {
- // An encapsulated buffer to maintain GPU memory, and handle transfers between
- // GPU and system memory. It is the responsibility of the user to ensure that
- // the appropriate GPU device is selected before each subroutine is called. This
- // is particularly important when using multiple GPU devices on different CPU
- // threads, since active Cuda devices are determined by the cuda runtime on a
- // per-thread basis.
- template <typename T>
- class CudaBuffer {
- public:
- explicit CudaBuffer(ContextImpl* context) : context_(context) {}
- CudaBuffer(ContextImpl* context, int size) : context_(context) {
- Reserve(size);
- }
- CudaBuffer(CudaBuffer&& other)
- : data_(other.data_), size_(other.size_), context_(other.context_) {
- other.data_ = nullptr;
- other.size_ = 0;
- }
- CudaBuffer(const CudaBuffer&) = delete;
- CudaBuffer& operator=(const CudaBuffer&) = delete;
- ~CudaBuffer() {
- if (data_ != nullptr) {
- CHECK_EQ(cudaFree(data_), cudaSuccess);
- }
- }
- // Grow the GPU memory buffer if needed to accommodate data of the specified
- // size
- void Reserve(const size_t size) {
- if (size > size_) {
- if (data_ != nullptr) {
- CHECK_EQ(cudaFree(data_), cudaSuccess);
- }
- CHECK_EQ(cudaMalloc(&data_, size * sizeof(T)), cudaSuccess)
- << "Failed to allocate " << size * sizeof(T)
- << " bytes of GPU memory";
- size_ = size;
- }
- }
- // Perform an asynchronous copy from CPU memory to GPU memory managed by this
- // CudaBuffer instance using the stream provided.
- void CopyFromCpu(const T* data, const size_t size) {
- Reserve(size);
- CHECK_EQ(cudaMemcpyAsync(data_,
- data,
- size * sizeof(T),
- cudaMemcpyHostToDevice,
- context_->DefaultStream()),
- cudaSuccess);
- }
- // Perform an asynchronous copy from a vector in CPU memory to GPU memory
- // managed by this CudaBuffer instance.
- void CopyFromCpuVector(const std::vector<T>& data) {
- Reserve(data.size());
- CHECK_EQ(cudaMemcpyAsync(data_,
- data.data(),
- data.size() * sizeof(T),
- cudaMemcpyHostToDevice,
- context_->DefaultStream()),
- cudaSuccess);
- }
- // Perform an asynchronous copy from another GPU memory array to the GPU
- // memory managed by this CudaBuffer instance using the stream provided.
- void CopyFromGPUArray(const T* data, const size_t size) {
- Reserve(size);
- CHECK_EQ(cudaMemcpyAsync(data_,
- data,
- size * sizeof(T),
- cudaMemcpyDeviceToDevice,
- context_->DefaultStream()),
- cudaSuccess);
- }
- // Copy data from the GPU memory managed by this CudaBuffer instance to CPU
- // memory. It is the caller's responsibility to ensure that the CPU memory
- // pointer is valid, i.e. it is not null, and that it points to memory of
- // at least this->size() size. This method ensures all previously dispatched
- // GPU operations on the specified stream have completed before copying the
- // data to CPU memory.
- void CopyToCpu(T* data, const size_t size) const {
- CHECK(data_ != nullptr);
- CHECK_EQ(cudaMemcpyAsync(data,
- data_,
- size * sizeof(T),
- cudaMemcpyDeviceToHost,
- context_->DefaultStream()),
- cudaSuccess);
- CHECK_EQ(cudaStreamSynchronize(context_->DefaultStream()), cudaSuccess);
- }
- // Copy N items from another GPU memory array to the GPU memory managed by
- // this CudaBuffer instance, growing this buffer's size if needed. This copy
- // is asynchronous, and operates on the stream provided.
- void CopyNItemsFrom(int n, const CudaBuffer<T>& other) {
- Reserve(n);
- CHECK(other.data_ != nullptr);
- CHECK(data_ != nullptr);
- CHECK_EQ(cudaMemcpyAsync(data_,
- other.data_,
- size_ * sizeof(T),
- cudaMemcpyDeviceToDevice,
- context_->DefaultStream()),
- cudaSuccess);
- }
- // Return a pointer to the GPU memory managed by this CudaBuffer instance.
- T* data() { return data_; }
- const T* data() const { return data_; }
- // Return the number of items of type T that can fit in the GPU memory
- // allocated so far by this CudaBuffer instance.
- size_t size() const { return size_; }
- private:
- T* data_ = nullptr;
- size_t size_ = 0;
- ContextImpl* context_ = nullptr;
- };
- } // namespace ceres::internal
- #endif // CERES_NO_CUDA
- #endif // CERES_INTERNAL_CUDA_BUFFER_H_
|