123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin)
- #include "ceres/internal/config.h"
- #ifndef CERES_NO_CUDA
- #include <glog/logging.h>
- #include <gtest/gtest.h>
- #include <numeric>
- #include "ceres/block_sparse_matrix.h"
- #include "ceres/cuda_block_structure.h"
- namespace ceres::internal {
- class CudaBlockStructureTest : public ::testing::Test {
- protected:
- void SetUp() final {
- std::string message;
- CHECK(context_.InitCuda(&message))
- << "InitCuda() failed because: " << message;
- BlockSparseMatrix::RandomMatrixOptions options;
- options.num_row_blocks = 1234;
- options.min_row_block_size = 1;
- options.max_row_block_size = 10;
- options.num_col_blocks = 567;
- options.min_col_block_size = 1;
- options.max_col_block_size = 10;
- options.block_density = 0.2;
- std::mt19937 rng;
- A_ = BlockSparseMatrix::CreateRandomMatrix(options, rng);
- std::iota(
- A_->mutable_values(), A_->mutable_values() + A_->num_nonzeros(), 1);
- }
- std::vector<Cell> GetCells(const CudaBlockSparseStructure& structure) {
- const auto& cuda_buffer = structure.cells_;
- std::vector<Cell> cells(cuda_buffer.size());
- cuda_buffer.CopyToCpu(cells.data(), cells.size());
- return cells;
- }
- std::vector<Block> GetRowBlocks(const CudaBlockSparseStructure& structure) {
- const auto& cuda_buffer = structure.row_blocks_;
- std::vector<Block> blocks(cuda_buffer.size());
- cuda_buffer.CopyToCpu(blocks.data(), blocks.size());
- return blocks;
- }
- std::vector<Block> GetColBlocks(const CudaBlockSparseStructure& structure) {
- const auto& cuda_buffer = structure.col_blocks_;
- std::vector<Block> blocks(cuda_buffer.size());
- cuda_buffer.CopyToCpu(blocks.data(), blocks.size());
- return blocks;
- }
- std::vector<int> GetRowBlockOffsets(
- const CudaBlockSparseStructure& structure) {
- const auto& cuda_buffer = structure.first_cell_in_row_block_;
- std::vector<int> first_cell_in_row_block(cuda_buffer.size());
- cuda_buffer.CopyToCpu(first_cell_in_row_block.data(),
- first_cell_in_row_block.size());
- return first_cell_in_row_block;
- }
- std::unique_ptr<BlockSparseMatrix> A_;
- ContextImpl context_;
- };
- TEST_F(CudaBlockStructureTest, StructureIdentity) {
- auto block_structure = A_->block_structure();
- const int num_row_blocks = block_structure->rows.size();
- const int num_col_blocks = block_structure->cols.size();
- CudaBlockSparseStructure cuda_block_structure(*block_structure, &context_);
- ASSERT_EQ(cuda_block_structure.num_rows(), A_->num_rows());
- ASSERT_EQ(cuda_block_structure.num_cols(), A_->num_cols());
- ASSERT_EQ(cuda_block_structure.num_nonzeros(), A_->num_nonzeros());
- ASSERT_EQ(cuda_block_structure.num_row_blocks(), num_row_blocks);
- ASSERT_EQ(cuda_block_structure.num_col_blocks(), num_col_blocks);
- std::vector<Block> blocks = GetColBlocks(cuda_block_structure);
- ASSERT_EQ(blocks.size(), num_col_blocks);
- for (int i = 0; i < num_col_blocks; ++i) {
- EXPECT_EQ(block_structure->cols[i].position, blocks[i].position);
- EXPECT_EQ(block_structure->cols[i].size, blocks[i].size);
- }
- std::vector<Cell> cells = GetCells(cuda_block_structure);
- std::vector<int> first_cell_in_row_block =
- GetRowBlockOffsets(cuda_block_structure);
- blocks = GetRowBlocks(cuda_block_structure);
- ASSERT_EQ(blocks.size(), num_row_blocks);
- ASSERT_EQ(first_cell_in_row_block.size(), num_row_blocks + 1);
- ASSERT_EQ(first_cell_in_row_block.back(), cells.size());
- for (int i = 0; i < num_row_blocks; ++i) {
- const int num_cells = block_structure->rows[i].cells.size();
- EXPECT_EQ(blocks[i].position, block_structure->rows[i].block.position);
- EXPECT_EQ(blocks[i].size, block_structure->rows[i].block.size);
- const int first_cell = first_cell_in_row_block[i];
- const int last_cell = first_cell_in_row_block[i + 1];
- ASSERT_EQ(last_cell - first_cell, num_cells);
- for (int j = 0; j < num_cells; ++j) {
- EXPECT_EQ(cells[first_cell + j].block_id,
- block_structure->rows[i].cells[j].block_id);
- EXPECT_EQ(cells[first_cell + j].position,
- block_structure->rows[i].cells[j].position);
- }
- }
- }
- } // namespace ceres::internal
- #endif // CERES_NO_CUDA
|