123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin)
- #ifndef CERES_INTERNAL_CUDA_BLOCK_STRUCTURE_H_
- #define CERES_INTERNAL_CUDA_BLOCK_STRUCTURE_H_
- #include "ceres/internal/config.h"
- #ifndef CERES_NO_CUDA
- #include "ceres/block_structure.h"
- #include "ceres/cuda_buffer.h"
- namespace ceres::internal {
- class CudaBlockStructureTest;
- // This class stores a read-only block-sparse structure in gpu memory.
- // Invariants are the same as those of CompressedRowBlockStructure.
- // In order to simplify allocation and copying data to gpu, cells from all
- // row-blocks are stored in a single array sequentially. Array
- // first_cell_in_row_block of size num_row_blocks + 1 allows to identify range
- // of cells corresponding to a row-block. Cells corresponding to i-th row-block
- // are stored in sub-array cells[first_cell_in_row_block[i]; ...
- // first_cell_in_row_block[i + 1] - 1], and their order is preserved.
- class CERES_NO_EXPORT CudaBlockSparseStructure {
- public:
- // CompressedRowBlockStructure is contains a vector of CompressedLists, with
- // each CompressedList containing a vector of Cells. We precompute a flat
- // array of cells on cpu and transfer it to the gpu.
- CudaBlockSparseStructure(const CompressedRowBlockStructure& block_structure,
- ContextImpl* context);
- // In the case of partitioned matrices, number of non-zeros in E and layout of
- // F are computed
- CudaBlockSparseStructure(const CompressedRowBlockStructure& block_structure,
- const int num_col_blocks_e,
- ContextImpl* context);
- int num_rows() const { return num_rows_; }
- int num_cols() const { return num_cols_; }
- int num_cells() const { return num_cells_; }
- int num_nonzeros() const { return num_nonzeros_; }
- // When partitioned matrix constructor was used, returns number of non-zeros
- // in E sub-matrix
- int num_nonzeros_e() const { return num_nonzeros_e_; }
- int num_row_blocks() const { return num_row_blocks_; }
- int num_row_blocks_e() const { return num_row_blocks_e_; }
- int num_col_blocks() const { return num_col_blocks_; }
- // Returns true if values from block-sparse matrix (F sub-matrix in
- // partitioned case) can be copied to CRS matrix as-is. This is possible if
- // each row-block is stored in CRS order:
- // - Row-block consists of a single row
- // - Row-block contains a single cell
- bool IsCrsCompatible() const { return is_crs_compatible_; }
- // Device pointer to array of num_row_blocks + 1 indices of the first cell of
- // row block
- const int* first_cell_in_row_block() const {
- return first_cell_in_row_block_.data();
- }
- // Device pointer to array of num_row_blocks + 1 indices of the first value in
- // this or subsequent row-blocks of submatrix F
- const int* value_offset_row_block_f() const {
- return value_offset_row_block_f_.data();
- }
- // Device pointer to array of num_cells cells, sorted by row-block
- const Cell* cells() const { return cells_.data(); }
- // Device pointer to array of row blocks
- const Block* row_blocks() const { return row_blocks_.data(); }
- // Device pointer to array of column blocks
- const Block* col_blocks() const { return col_blocks_.data(); }
- private:
- int num_rows_;
- int num_cols_;
- int num_cells_;
- int num_nonzeros_;
- int num_nonzeros_e_;
- int num_row_blocks_;
- int num_row_blocks_e_;
- int num_col_blocks_;
- bool is_crs_compatible_;
- CudaBuffer<int> first_cell_in_row_block_;
- CudaBuffer<int> value_offset_row_block_f_;
- CudaBuffer<Cell> cells_;
- CudaBuffer<Block> row_blocks_;
- CudaBuffer<Block> col_blocks_;
- friend class CudaBlockStructureTest;
- };
- } // namespace ceres::internal
- #endif // CERES_NO_CUDA
- #endif // CERES_INTERNAL_CUDA_BLOCK_SPARSE_STRUCTURE_H_
|