123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/cubic_interpolation.h"
- #include <memory>
- #include "ceres/jet.h"
- #include "glog/logging.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- static constexpr double kTolerance = 1e-12;
- TEST(Grid1D, OneDataDimension) {
- int x[] = {1, 2, 3};
- Grid1D<int, 1> grid(x, 0, 3);
- for (int i = 0; i < 3; ++i) {
- double value;
- grid.GetValue(i, &value);
- EXPECT_EQ(value, static_cast<double>(i + 1));
- }
- }
- TEST(Grid1D, OneDataDimensionOutOfBounds) {
- int x[] = {1, 2, 3};
- Grid1D<int, 1> grid(x, 0, 3);
- double value;
- grid.GetValue(-1, &value);
- EXPECT_EQ(value, x[0]);
- grid.GetValue(-2, &value);
- EXPECT_EQ(value, x[0]);
- grid.GetValue(3, &value);
- EXPECT_EQ(value, x[2]);
- grid.GetValue(4, &value);
- EXPECT_EQ(value, x[2]);
- }
- TEST(Grid1D, TwoDataDimensionIntegerDataInterleaved) {
- // clang-format off
- int x[] = {1, 5,
- 2, 6,
- 3, 7};
- // clang-format on
- Grid1D<int, 2, true> grid(x, 0, 3);
- for (int i = 0; i < 3; ++i) {
- double value[2];
- grid.GetValue(i, value);
- EXPECT_EQ(value[0], static_cast<double>(i + 1));
- EXPECT_EQ(value[1], static_cast<double>(i + 5));
- }
- }
- TEST(Grid1D, TwoDataDimensionIntegerDataStacked) {
- // clang-format off
- int x[] = {1, 2, 3,
- 5, 6, 7};
- // clang-format on
- Grid1D<int, 2, false> grid(x, 0, 3);
- for (int i = 0; i < 3; ++i) {
- double value[2];
- grid.GetValue(i, value);
- EXPECT_EQ(value[0], static_cast<double>(i + 1));
- EXPECT_EQ(value[1], static_cast<double>(i + 5));
- }
- }
- TEST(Grid2D, OneDataDimensionRowMajor) {
- // clang-format off
- int x[] = {1, 2, 3,
- 2, 3, 4};
- // clang-format on
- Grid2D<int, 1, true, true> grid(x, 0, 2, 0, 3);
- for (int r = 0; r < 2; ++r) {
- for (int c = 0; c < 3; ++c) {
- double value;
- grid.GetValue(r, c, &value);
- EXPECT_EQ(value, static_cast<double>(r + c + 1));
- }
- }
- }
- TEST(Grid2D, OneDataDimensionRowMajorOutOfBounds) {
- // clang-format off
- int x[] = {1, 2, 3,
- 2, 3, 4};
- // clang-format on
- Grid2D<int, 1, true, true> grid(x, 0, 2, 0, 3);
- double value;
- grid.GetValue(-1, -1, &value);
- EXPECT_EQ(value, x[0]);
- grid.GetValue(-1, 0, &value);
- EXPECT_EQ(value, x[0]);
- grid.GetValue(-1, 1, &value);
- EXPECT_EQ(value, x[1]);
- grid.GetValue(-1, 2, &value);
- EXPECT_EQ(value, x[2]);
- grid.GetValue(-1, 3, &value);
- EXPECT_EQ(value, x[2]);
- grid.GetValue(0, 3, &value);
- EXPECT_EQ(value, x[2]);
- grid.GetValue(1, 3, &value);
- EXPECT_EQ(value, x[5]);
- grid.GetValue(2, 3, &value);
- EXPECT_EQ(value, x[5]);
- grid.GetValue(2, 2, &value);
- EXPECT_EQ(value, x[5]);
- grid.GetValue(2, 1, &value);
- EXPECT_EQ(value, x[4]);
- grid.GetValue(2, 0, &value);
- EXPECT_EQ(value, x[3]);
- grid.GetValue(2, -1, &value);
- EXPECT_EQ(value, x[3]);
- grid.GetValue(1, -1, &value);
- EXPECT_EQ(value, x[3]);
- grid.GetValue(0, -1, &value);
- EXPECT_EQ(value, x[0]);
- }
- TEST(Grid2D, TwoDataDimensionRowMajorInterleaved) {
- // clang-format off
- int x[] = {1, 4, 2, 8, 3, 12,
- 2, 8, 3, 12, 4, 16};
- // clang-format on
- Grid2D<int, 2, true, true> grid(x, 0, 2, 0, 3);
- for (int r = 0; r < 2; ++r) {
- for (int c = 0; c < 3; ++c) {
- double value[2];
- grid.GetValue(r, c, value);
- EXPECT_EQ(value[0], static_cast<double>(r + c + 1));
- EXPECT_EQ(value[1], static_cast<double>(4 * (r + c + 1)));
- }
- }
- }
- TEST(Grid2D, TwoDataDimensionRowMajorStacked) {
- // clang-format off
- int x[] = {1, 2, 3,
- 2, 3, 4,
- 4, 8, 12,
- 8, 12, 16};
- // clang-format on
- Grid2D<int, 2, true, false> grid(x, 0, 2, 0, 3);
- for (int r = 0; r < 2; ++r) {
- for (int c = 0; c < 3; ++c) {
- double value[2];
- grid.GetValue(r, c, value);
- EXPECT_EQ(value[0], static_cast<double>(r + c + 1));
- EXPECT_EQ(value[1], static_cast<double>(4 * (r + c + 1)));
- }
- }
- }
- TEST(Grid2D, TwoDataDimensionColMajorInterleaved) {
- // clang-format off
- int x[] = { 1, 4, 2, 8,
- 2, 8, 3, 12,
- 3, 12, 4, 16};
- // clang-format on
- Grid2D<int, 2, false, true> grid(x, 0, 2, 0, 3);
- for (int r = 0; r < 2; ++r) {
- for (int c = 0; c < 3; ++c) {
- double value[2];
- grid.GetValue(r, c, value);
- EXPECT_EQ(value[0], static_cast<double>(r + c + 1));
- EXPECT_EQ(value[1], static_cast<double>(4 * (r + c + 1)));
- }
- }
- }
- TEST(Grid2D, TwoDataDimensionColMajorStacked) {
- // clang-format off
- int x[] = {1, 2,
- 2, 3,
- 3, 4,
- 4, 8,
- 8, 12,
- 12, 16};
- // clang-format on
- Grid2D<int, 2, false, false> grid(x, 0, 2, 0, 3);
- for (int r = 0; r < 2; ++r) {
- for (int c = 0; c < 3; ++c) {
- double value[2];
- grid.GetValue(r, c, value);
- EXPECT_EQ(value[0], static_cast<double>(r + c + 1));
- EXPECT_EQ(value[1], static_cast<double>(4 * (r + c + 1)));
- }
- }
- }
- class CubicInterpolatorTest : public ::testing::Test {
- public:
- template <int kDataDimension>
- void RunPolynomialInterpolationTest(const double a,
- const double b,
- const double c,
- const double d) {
- values_ = std::make_unique<double[]>(kDataDimension * kNumSamples);
- for (int x = 0; x < kNumSamples; ++x) {
- for (int dim = 0; dim < kDataDimension; ++dim) {
- values_[x * kDataDimension + dim] =
- (dim * dim + 1) * (a * x * x * x + b * x * x + c * x + d);
- }
- }
- Grid1D<double, kDataDimension> grid(values_.get(), 0, kNumSamples);
- CubicInterpolator<Grid1D<double, kDataDimension>> interpolator(grid);
- // Check values in the all the cells but the first and the last
- // ones. In these cells, the interpolated function values should
- // match exactly the values of the function being interpolated.
- //
- // On the boundary, we extrapolate the values of the function on
- // the basis of its first derivative, so we do not expect the
- // function values and its derivatives not to match.
- for (int j = 0; j < kNumTestSamples; ++j) {
- const double x = 1.0 + 7.0 / (kNumTestSamples - 1) * j;
- double expected_f[kDataDimension], expected_dfdx[kDataDimension];
- double f[kDataDimension], dfdx[kDataDimension];
- for (int dim = 0; dim < kDataDimension; ++dim) {
- expected_f[dim] =
- (dim * dim + 1) * (a * x * x * x + b * x * x + c * x + d);
- expected_dfdx[dim] =
- (dim * dim + 1) * (3.0 * a * x * x + 2.0 * b * x + c);
- }
- interpolator.Evaluate(x, f, dfdx);
- for (int dim = 0; dim < kDataDimension; ++dim) {
- EXPECT_NEAR(f[dim], expected_f[dim], kTolerance)
- << "x: " << x << " dim: " << dim
- << " actual f(x): " << expected_f[dim]
- << " estimated f(x): " << f[dim];
- EXPECT_NEAR(dfdx[dim], expected_dfdx[dim], kTolerance)
- << "x: " << x << " dim: " << dim
- << " actual df(x)/dx: " << expected_dfdx[dim]
- << " estimated df(x)/dx: " << dfdx[dim];
- }
- }
- }
- private:
- static constexpr int kNumSamples = 10;
- static constexpr int kNumTestSamples = 100;
- std::unique_ptr<double[]> values_;
- };
- TEST_F(CubicInterpolatorTest, ConstantFunction) {
- RunPolynomialInterpolationTest<1>(0.0, 0.0, 0.0, 0.5);
- RunPolynomialInterpolationTest<2>(0.0, 0.0, 0.0, 0.5);
- RunPolynomialInterpolationTest<3>(0.0, 0.0, 0.0, 0.5);
- }
- TEST_F(CubicInterpolatorTest, LinearFunction) {
- RunPolynomialInterpolationTest<1>(0.0, 0.0, 1.0, 0.5);
- RunPolynomialInterpolationTest<2>(0.0, 0.0, 1.0, 0.5);
- RunPolynomialInterpolationTest<3>(0.0, 0.0, 1.0, 0.5);
- }
- TEST_F(CubicInterpolatorTest, QuadraticFunction) {
- RunPolynomialInterpolationTest<1>(0.0, 0.4, 1.0, 0.5);
- RunPolynomialInterpolationTest<2>(0.0, 0.4, 1.0, 0.5);
- RunPolynomialInterpolationTest<3>(0.0, 0.4, 1.0, 0.5);
- }
- TEST(CubicInterpolator, JetEvaluation) {
- const double values[] = {1.0, 2.0, 2.0, 5.0, 3.0, 9.0, 2.0, 7.0};
- Grid1D<double, 2, true> grid(values, 0, 4);
- CubicInterpolator<Grid1D<double, 2, true>> interpolator(grid);
- double f[2], dfdx[2];
- const double x = 2.5;
- interpolator.Evaluate(x, f, dfdx);
- // Create a Jet with the same scalar part as x, so that the output
- // Jet will be evaluated at x.
- Jet<double, 4> x_jet;
- x_jet.a = x;
- x_jet.v(0) = 1.0;
- x_jet.v(1) = 1.1;
- x_jet.v(2) = 1.2;
- x_jet.v(3) = 1.3;
- Jet<double, 4> f_jets[2];
- interpolator.Evaluate(x_jet, f_jets);
- // Check that the scalar part of the Jet is f(x).
- EXPECT_EQ(f_jets[0].a, f[0]);
- EXPECT_EQ(f_jets[1].a, f[1]);
- // Check that the derivative part of the Jet is dfdx * x_jet.v
- // by the chain rule.
- EXPECT_NEAR((f_jets[0].v - dfdx[0] * x_jet.v).norm(), 0.0, kTolerance);
- EXPECT_NEAR((f_jets[1].v - dfdx[1] * x_jet.v).norm(), 0.0, kTolerance);
- }
- class BiCubicInterpolatorTest : public ::testing::Test {
- public:
- // This class needs to have an Eigen aligned operator new as it contains
- // fixed-size Eigen types.
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW
- template <int kDataDimension>
- void RunPolynomialInterpolationTest(const Eigen::Matrix3d& coeff) {
- values_ = std::make_unique<double[]>(kNumRows * kNumCols * kDataDimension);
- coeff_ = coeff;
- double* v = values_.get();
- for (int r = 0; r < kNumRows; ++r) {
- for (int c = 0; c < kNumCols; ++c) {
- for (int dim = 0; dim < kDataDimension; ++dim) {
- *v++ = (dim * dim + 1) * EvaluateF(r, c);
- }
- }
- }
- Grid2D<double, kDataDimension> grid(
- values_.get(), 0, kNumRows, 0, kNumCols);
- BiCubicInterpolator<Grid2D<double, kDataDimension>> interpolator(grid);
- for (int j = 0; j < kNumRowSamples; ++j) {
- const double r = 1.0 + 7.0 / (kNumRowSamples - 1) * j;
- for (int k = 0; k < kNumColSamples; ++k) {
- const double c = 1.0 + 7.0 / (kNumColSamples - 1) * k;
- double f[kDataDimension], dfdr[kDataDimension], dfdc[kDataDimension];
- interpolator.Evaluate(r, c, f, dfdr, dfdc);
- for (int dim = 0; dim < kDataDimension; ++dim) {
- EXPECT_NEAR(f[dim], (dim * dim + 1) * EvaluateF(r, c), kTolerance);
- EXPECT_NEAR(
- dfdr[dim], (dim * dim + 1) * EvaluatedFdr(r, c), kTolerance);
- EXPECT_NEAR(
- dfdc[dim], (dim * dim + 1) * EvaluatedFdc(r, c), kTolerance);
- }
- }
- }
- }
- private:
- double EvaluateF(double r, double c) {
- Eigen::Vector3d x;
- x(0) = r;
- x(1) = c;
- x(2) = 1;
- return x.transpose() * coeff_ * x;
- }
- double EvaluatedFdr(double r, double c) {
- Eigen::Vector3d x;
- x(0) = r;
- x(1) = c;
- x(2) = 1;
- return (coeff_.row(0) + coeff_.col(0).transpose()) * x;
- }
- double EvaluatedFdc(double r, double c) {
- Eigen::Vector3d x;
- x(0) = r;
- x(1) = c;
- x(2) = 1;
- return (coeff_.row(1) + coeff_.col(1).transpose()) * x;
- }
- Eigen::Matrix3d coeff_;
- static constexpr int kNumRows = 10;
- static constexpr int kNumCols = 10;
- static constexpr int kNumRowSamples = 100;
- static constexpr int kNumColSamples = 100;
- std::unique_ptr<double[]> values_;
- };
- TEST_F(BiCubicInterpolatorTest, ZeroFunction) {
- Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
- RunPolynomialInterpolationTest<1>(coeff);
- RunPolynomialInterpolationTest<2>(coeff);
- RunPolynomialInterpolationTest<3>(coeff);
- }
- TEST_F(BiCubicInterpolatorTest, Degree00Function) {
- Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
- coeff(2, 2) = 1.0;
- RunPolynomialInterpolationTest<1>(coeff);
- RunPolynomialInterpolationTest<2>(coeff);
- RunPolynomialInterpolationTest<3>(coeff);
- }
- TEST_F(BiCubicInterpolatorTest, Degree01Function) {
- Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
- coeff(2, 2) = 1.0;
- coeff(0, 2) = 0.1;
- coeff(2, 0) = 0.1;
- RunPolynomialInterpolationTest<1>(coeff);
- RunPolynomialInterpolationTest<2>(coeff);
- RunPolynomialInterpolationTest<3>(coeff);
- }
- TEST_F(BiCubicInterpolatorTest, Degree10Function) {
- Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
- coeff(2, 2) = 1.0;
- coeff(0, 1) = 0.1;
- coeff(1, 0) = 0.1;
- RunPolynomialInterpolationTest<1>(coeff);
- RunPolynomialInterpolationTest<2>(coeff);
- RunPolynomialInterpolationTest<3>(coeff);
- }
- TEST_F(BiCubicInterpolatorTest, Degree11Function) {
- Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
- coeff(2, 2) = 1.0;
- coeff(0, 1) = 0.1;
- coeff(1, 0) = 0.1;
- coeff(0, 2) = 0.2;
- coeff(2, 0) = 0.2;
- RunPolynomialInterpolationTest<1>(coeff);
- RunPolynomialInterpolationTest<2>(coeff);
- RunPolynomialInterpolationTest<3>(coeff);
- }
- TEST_F(BiCubicInterpolatorTest, Degree12Function) {
- Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
- coeff(2, 2) = 1.0;
- coeff(0, 1) = 0.1;
- coeff(1, 0) = 0.1;
- coeff(0, 2) = 0.2;
- coeff(2, 0) = 0.2;
- coeff(1, 1) = 0.3;
- RunPolynomialInterpolationTest<1>(coeff);
- RunPolynomialInterpolationTest<2>(coeff);
- RunPolynomialInterpolationTest<3>(coeff);
- }
- TEST_F(BiCubicInterpolatorTest, Degree21Function) {
- Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
- coeff(2, 2) = 1.0;
- coeff(0, 1) = 0.1;
- coeff(1, 0) = 0.1;
- coeff(0, 2) = 0.2;
- coeff(2, 0) = 0.2;
- coeff(0, 0) = 0.3;
- RunPolynomialInterpolationTest<1>(coeff);
- RunPolynomialInterpolationTest<2>(coeff);
- RunPolynomialInterpolationTest<3>(coeff);
- }
- TEST_F(BiCubicInterpolatorTest, Degree22Function) {
- Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero();
- coeff(2, 2) = 1.0;
- coeff(0, 1) = 0.1;
- coeff(1, 0) = 0.1;
- coeff(0, 2) = 0.2;
- coeff(2, 0) = 0.2;
- coeff(0, 0) = 0.3;
- coeff(0, 1) = -0.4;
- coeff(1, 0) = -0.4;
- RunPolynomialInterpolationTest<1>(coeff);
- RunPolynomialInterpolationTest<2>(coeff);
- RunPolynomialInterpolationTest<3>(coeff);
- }
- TEST(BiCubicInterpolator, JetEvaluation) {
- // clang-format off
- const double values[] = {1.0, 5.0, 2.0, 10.0, 2.0, 6.0, 3.0, 5.0,
- 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 1.0};
- // clang-format on
- Grid2D<double, 2> grid(values, 0, 2, 0, 4);
- BiCubicInterpolator<Grid2D<double, 2>> interpolator(grid);
- double f[2], dfdr[2], dfdc[2];
- const double r = 0.5;
- const double c = 2.5;
- interpolator.Evaluate(r, c, f, dfdr, dfdc);
- // Create a Jet with the same scalar part as x, so that the output
- // Jet will be evaluated at x.
- Jet<double, 4> r_jet;
- r_jet.a = r;
- r_jet.v(0) = 1.0;
- r_jet.v(1) = 1.1;
- r_jet.v(2) = 1.2;
- r_jet.v(3) = 1.3;
- Jet<double, 4> c_jet;
- c_jet.a = c;
- c_jet.v(0) = 2.0;
- c_jet.v(1) = 3.1;
- c_jet.v(2) = 4.2;
- c_jet.v(3) = 5.3;
- Jet<double, 4> f_jets[2];
- interpolator.Evaluate(r_jet, c_jet, f_jets);
- EXPECT_EQ(f_jets[0].a, f[0]);
- EXPECT_EQ(f_jets[1].a, f[1]);
- EXPECT_NEAR((f_jets[0].v - dfdr[0] * r_jet.v - dfdc[0] * c_jet.v).norm(),
- 0.0,
- kTolerance);
- EXPECT_NEAR((f_jets[1].v - dfdr[1] * r_jet.v - dfdc[1] * c_jet.v).norm(),
- 0.0,
- kTolerance);
- }
- } // namespace ceres::internal
|