123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: keir@google.com (Keir Mierle)
- //
- // End-to-end bundle adjustment test utilities for Ceres. This base is used in
- // the generated bundle adjustment test binaries. The reason to split the
- // bundle tests into separate binaries is so the tests can get parallelized.
- #include <cmath>
- #include <cstdio>
- #include <cstdlib>
- #include <string>
- #include "ceres/autodiff_cost_function.h"
- #include "ceres/internal/export.h"
- #include "ceres/ordered_groups.h"
- #include "ceres/problem.h"
- #include "ceres/rotation.h"
- #include "ceres/solver.h"
- #include "ceres/stringprintf.h"
- #include "ceres/test_util.h"
- #include "ceres/types.h"
- #include "glog/logging.h"
- namespace ceres {
- namespace internal {
- const bool kAutomaticOrdering = true;
- const bool kUserOrdering = false;
- // This class implements the SystemTestProblem interface and provides
- // access to a bundle adjustment problem. It is based on
- // examples/bundle_adjustment_example.cc. Currently a small 16 camera
- // problem is hard coded in the constructor.
- class BundleAdjustmentProblem {
- public:
- BundleAdjustmentProblem(const std::string input_file) {
- ReadData(input_file);
- BuildProblem();
- }
- BundleAdjustmentProblem() {
- const std::string input_file =
- TestFileAbsolutePath("problem-16-22106-pre.txt");
- ReadData(input_file);
- BuildProblem();
- }
- ~BundleAdjustmentProblem() {
- delete[] point_index_;
- delete[] camera_index_;
- delete[] observations_;
- delete[] parameters_;
- }
- Problem* mutable_problem() { return &problem_; }
- Solver::Options* mutable_solver_options() { return &options_; }
- // clang-format off
- int num_cameras() const { return num_cameras_; }
- int num_points() const { return num_points_; }
- int num_observations() const { return num_observations_; }
- const int* point_index() const { return point_index_; }
- const int* camera_index() const { return camera_index_; }
- const double* observations() const { return observations_; }
- double* mutable_cameras() { return parameters_; }
- double* mutable_points() { return parameters_ + 9 * num_cameras_; }
- const Solver::Options& options() const { return options_; }
- // clang-format on
- static double kResidualTolerance;
- private:
- void ReadData(const std::string& filename) {
- FILE* fptr = fopen(filename.c_str(), "r");
- if (!fptr) {
- LOG(FATAL) << "File Error: unable to open file " << filename;
- }
- // This will die horribly on invalid files. Them's the breaks.
- FscanfOrDie(fptr, "%d", &num_cameras_);
- FscanfOrDie(fptr, "%d", &num_points_);
- FscanfOrDie(fptr, "%d", &num_observations_);
- VLOG(1) << "Header: " << num_cameras_ << " " << num_points_ << " "
- << num_observations_;
- point_index_ = new int[num_observations_];
- camera_index_ = new int[num_observations_];
- observations_ = new double[2 * num_observations_];
- num_parameters_ = 9 * num_cameras_ + 3 * num_points_;
- parameters_ = new double[num_parameters_];
- for (int i = 0; i < num_observations_; ++i) {
- FscanfOrDie(fptr, "%d", camera_index_ + i);
- FscanfOrDie(fptr, "%d", point_index_ + i);
- for (int j = 0; j < 2; ++j) {
- FscanfOrDie(fptr, "%lf", observations_ + 2 * i + j);
- }
- }
- for (int i = 0; i < num_parameters_; ++i) {
- FscanfOrDie(fptr, "%lf", parameters_ + i);
- }
- fclose(fptr);
- }
- void BuildProblem() {
- double* points = mutable_points();
- double* cameras = mutable_cameras();
- for (int i = 0; i < num_observations(); ++i) {
- // Each Residual block takes a point and a camera as input and
- // outputs a 2 dimensional residual.
- CostFunction* cost_function =
- new AutoDiffCostFunction<BundlerResidual, 2, 9, 3>(
- new BundlerResidual(observations_[2 * i + 0],
- observations_[2 * i + 1]));
- // Each observation corresponds to a pair of a camera and a point
- // which are identified by camera_index()[i] and
- // point_index()[i] respectively.
- double* camera = cameras + 9 * camera_index_[i];
- double* point = points + 3 * point_index()[i];
- problem_.AddResidualBlock(cost_function, nullptr, camera, point);
- }
- options_.linear_solver_ordering =
- std::make_shared<ParameterBlockOrdering>();
- // The points come before the cameras.
- for (int i = 0; i < num_points_; ++i) {
- options_.linear_solver_ordering->AddElementToGroup(points + 3 * i, 0);
- }
- for (int i = 0; i < num_cameras_; ++i) {
- options_.linear_solver_ordering->AddElementToGroup(cameras + 9 * i, 1);
- }
- options_.linear_solver_type = DENSE_SCHUR;
- options_.max_num_iterations = 25;
- options_.function_tolerance = 1e-10;
- options_.gradient_tolerance = 1e-10;
- options_.parameter_tolerance = 1e-10;
- }
- template <typename T>
- void FscanfOrDie(FILE* fptr, const char* format, T* value) {
- int num_scanned = fscanf(fptr, format, value);
- if (num_scanned != 1) {
- LOG(FATAL) << "Invalid UW data file.";
- }
- }
- // Templated pinhole camera model. The camera is parameterized
- // using 9 parameters. 3 for rotation, 3 for translation, 1 for
- // focal length and 2 for radial distortion. The principal point is
- // not modeled (i.e. it is assumed to be located at the image
- // center).
- struct BundlerResidual {
- // (u, v): the position of the observation with respect to the image
- // center point.
- BundlerResidual(double u, double v) : u(u), v(v) {}
- template <typename T>
- bool operator()(const T* const camera,
- const T* const point,
- T* residuals) const {
- T p[3];
- AngleAxisRotatePoint(camera, point, p);
- // Add the translation vector
- p[0] += camera[3];
- p[1] += camera[4];
- p[2] += camera[5];
- const T& focal = camera[6];
- const T& l1 = camera[7];
- const T& l2 = camera[8];
- // Compute the center of distortion. The sign change comes from
- // the camera model that Noah Snavely's Bundler assumes, whereby
- // the camera coordinate system has a negative z axis.
- T xp = -focal * p[0] / p[2];
- T yp = -focal * p[1] / p[2];
- // Apply second and fourth order radial distortion.
- T r2 = xp * xp + yp * yp;
- T distortion = T(1.0) + r2 * (l1 + l2 * r2);
- residuals[0] = distortion * xp - u;
- residuals[1] = distortion * yp - v;
- return true;
- }
- double u;
- double v;
- };
- Problem problem_;
- Solver::Options options_;
- int num_cameras_;
- int num_points_;
- int num_observations_;
- int num_parameters_;
- int* point_index_;
- int* camera_index_;
- double* observations_;
- // The parameter vector is laid out as follows
- // [camera_1, ..., camera_n, point_1, ..., point_m]
- double* parameters_;
- };
- double BundleAdjustmentProblem::kResidualTolerance = 1e-4;
- using BundleAdjustmentTest = SystemTest<BundleAdjustmentProblem>;
- } // namespace internal
- } // namespace ceres
|