123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/block_sparse_matrix.h"
- #include <algorithm>
- #include <memory>
- #include <random>
- #include <string>
- #include <vector>
- #include "ceres/casts.h"
- #include "ceres/crs_matrix.h"
- #include "ceres/internal/eigen.h"
- #include "ceres/linear_least_squares_problems.h"
- #include "ceres/triplet_sparse_matrix.h"
- #include "glog/logging.h"
- #include "gtest/gtest.h"
- namespace ceres {
- namespace internal {
- namespace {
- std::unique_ptr<BlockSparseMatrix> CreateTestMatrixFromId(int id) {
- if (id == 0) {
- // Create the following block sparse matrix:
- // [ 1 2 0 0 0 0 ]
- // [ 3 4 0 0 0 0 ]
- // [ 0 0 5 6 7 0 ]
- // [ 0 0 8 9 10 0 ]
- CompressedRowBlockStructure* bs = new CompressedRowBlockStructure;
- bs->cols = {
- // Block size 2, position 0.
- Block(2, 0),
- // Block size 3, position 2.
- Block(3, 2),
- // Block size 1, position 5.
- Block(1, 5),
- };
- bs->rows = {CompressedRow(1), CompressedRow(1)};
- bs->rows[0].block = Block(2, 0);
- bs->rows[0].cells = {Cell(0, 0)};
- bs->rows[1].block = Block(2, 2);
- bs->rows[1].cells = {Cell(1, 4)};
- auto m = std::make_unique<BlockSparseMatrix>(bs);
- EXPECT_NE(m, nullptr);
- EXPECT_EQ(m->num_rows(), 4);
- EXPECT_EQ(m->num_cols(), 6);
- EXPECT_EQ(m->num_nonzeros(), 10);
- double* values = m->mutable_values();
- for (int i = 0; i < 10; ++i) {
- values[i] = i + 1;
- }
- return m;
- } else if (id == 1) {
- // Create the following block sparse matrix:
- // [ 1 2 0 5 6 0 ]
- // [ 3 4 0 7 8 0 ]
- // [ 0 0 9 0 0 0 ]
- CompressedRowBlockStructure* bs = new CompressedRowBlockStructure;
- bs->cols = {
- // Block size 2, position 0.
- Block(2, 0),
- // Block size 1, position 2.
- Block(1, 2),
- // Block size 2, position 3.
- Block(2, 3),
- // Block size 1, position 5.
- Block(1, 5),
- };
- bs->rows = {CompressedRow(2), CompressedRow(1)};
- bs->rows[0].block = Block(2, 0);
- bs->rows[0].cells = {Cell(0, 0), Cell(2, 4)};
- bs->rows[1].block = Block(1, 2);
- bs->rows[1].cells = {Cell(1, 8)};
- auto m = std::make_unique<BlockSparseMatrix>(bs);
- EXPECT_NE(m, nullptr);
- EXPECT_EQ(m->num_rows(), 3);
- EXPECT_EQ(m->num_cols(), 6);
- EXPECT_EQ(m->num_nonzeros(), 9);
- double* values = m->mutable_values();
- for (int i = 0; i < 9; ++i) {
- values[i] = i + 1;
- }
- return m;
- } else if (id == 2) {
- // Create the following block sparse matrix:
- // [ 1 2 0 | 6 7 0 ]
- // [ 3 4 0 | 8 9 0 ]
- // [ 0 0 5 | 0 0 10]
- // With cells of the left submatrix preceding cells of the right submatrix
- CompressedRowBlockStructure* bs = new CompressedRowBlockStructure;
- bs->cols = {
- // Block size 2, position 0.
- Block(2, 0),
- // Block size 1, position 2.
- Block(1, 2),
- // Block size 2, position 3.
- Block(2, 3),
- // Block size 1, position 5.
- Block(1, 5),
- };
- bs->rows = {CompressedRow(2), CompressedRow(1)};
- bs->rows[0].block = Block(2, 0);
- bs->rows[0].cells = {Cell(0, 0), Cell(2, 5)};
- bs->rows[1].block = Block(1, 2);
- bs->rows[1].cells = {Cell(1, 4), Cell(3, 9)};
- auto m = std::make_unique<BlockSparseMatrix>(bs);
- EXPECT_NE(m, nullptr);
- EXPECT_EQ(m->num_rows(), 3);
- EXPECT_EQ(m->num_cols(), 6);
- EXPECT_EQ(m->num_nonzeros(), 10);
- double* values = m->mutable_values();
- for (int i = 0; i < 10; ++i) {
- values[i] = i + 1;
- }
- return m;
- }
- return nullptr;
- }
- } // namespace
- const int kNumThreads = 4;
- class BlockSparseMatrixTest : public ::testing::Test {
- protected:
- void SetUp() final {
- std::unique_ptr<LinearLeastSquaresProblem> problem =
- CreateLinearLeastSquaresProblemFromId(2);
- CHECK(problem != nullptr);
- a_.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
- problem = CreateLinearLeastSquaresProblemFromId(1);
- CHECK(problem != nullptr);
- b_.reset(down_cast<TripletSparseMatrix*>(problem->A.release()));
- CHECK_EQ(a_->num_rows(), b_->num_rows());
- CHECK_EQ(a_->num_cols(), b_->num_cols());
- CHECK_EQ(a_->num_nonzeros(), b_->num_nonzeros());
- context_.EnsureMinimumThreads(kNumThreads);
- BlockSparseMatrix::RandomMatrixOptions options;
- options.num_row_blocks = 1000;
- options.min_row_block_size = 1;
- options.max_row_block_size = 8;
- options.num_col_blocks = 100;
- options.min_col_block_size = 1;
- options.max_col_block_size = 8;
- options.block_density = 0.05;
- std::mt19937 rng;
- c_ = BlockSparseMatrix::CreateRandomMatrix(options, rng);
- }
- std::unique_ptr<BlockSparseMatrix> a_;
- std::unique_ptr<TripletSparseMatrix> b_;
- std::unique_ptr<BlockSparseMatrix> c_;
- ContextImpl context_;
- };
- TEST_F(BlockSparseMatrixTest, SetZeroTest) {
- a_->SetZero();
- EXPECT_EQ(13, a_->num_nonzeros());
- }
- TEST_F(BlockSparseMatrixTest, RightMultiplyAndAccumulateTest) {
- Vector y_a = Vector::Zero(a_->num_rows());
- Vector y_b = Vector::Zero(a_->num_rows());
- for (int i = 0; i < a_->num_cols(); ++i) {
- Vector x = Vector::Zero(a_->num_cols());
- x[i] = 1.0;
- a_->RightMultiplyAndAccumulate(x.data(), y_a.data());
- b_->RightMultiplyAndAccumulate(x.data(), y_b.data());
- EXPECT_LT((y_a - y_b).norm(), 1e-12);
- }
- }
- TEST_F(BlockSparseMatrixTest, RightMultiplyAndAccumulateParallelTest) {
- Vector y_0 = Vector::Random(a_->num_rows());
- Vector y_s = y_0;
- Vector y_p = y_0;
- Vector x = Vector::Random(a_->num_cols());
- a_->RightMultiplyAndAccumulate(x.data(), y_s.data());
- a_->RightMultiplyAndAccumulate(x.data(), y_p.data(), &context_, kNumThreads);
- // Current parallel implementation is expected to be bit-exact
- EXPECT_EQ((y_s - y_p).norm(), 0.);
- }
- TEST_F(BlockSparseMatrixTest, LeftMultiplyAndAccumulateTest) {
- Vector y_a = Vector::Zero(a_->num_cols());
- Vector y_b = Vector::Zero(a_->num_cols());
- for (int i = 0; i < a_->num_rows(); ++i) {
- Vector x = Vector::Zero(a_->num_rows());
- x[i] = 1.0;
- a_->LeftMultiplyAndAccumulate(x.data(), y_a.data());
- b_->LeftMultiplyAndAccumulate(x.data(), y_b.data());
- EXPECT_LT((y_a - y_b).norm(), 1e-12);
- }
- }
- TEST_F(BlockSparseMatrixTest, LeftMultiplyAndAccumulateParallelTest) {
- Vector y_0 = Vector::Random(a_->num_cols());
- Vector y_s = y_0;
- Vector y_p = y_0;
- Vector x = Vector::Random(a_->num_rows());
- a_->LeftMultiplyAndAccumulate(x.data(), y_s.data());
- a_->LeftMultiplyAndAccumulate(x.data(), y_p.data(), &context_, kNumThreads);
- // Parallel implementation for left products uses a different order of
- // traversal, thus results might be different
- EXPECT_LT((y_s - y_p).norm(), 1e-12);
- }
- TEST_F(BlockSparseMatrixTest, SquaredColumnNormTest) {
- Vector y_a = Vector::Zero(a_->num_cols());
- Vector y_b = Vector::Zero(a_->num_cols());
- a_->SquaredColumnNorm(y_a.data());
- b_->SquaredColumnNorm(y_b.data());
- EXPECT_LT((y_a - y_b).norm(), 1e-12);
- }
- TEST_F(BlockSparseMatrixTest, SquaredColumnNormParallelTest) {
- Vector y_a = Vector::Zero(c_->num_cols());
- Vector y_b = Vector::Zero(c_->num_cols());
- c_->SquaredColumnNorm(y_a.data());
- c_->SquaredColumnNorm(y_b.data(), &context_, kNumThreads);
- EXPECT_LT((y_a - y_b).norm(), 1e-12);
- }
- TEST_F(BlockSparseMatrixTest, ScaleColumnsTest) {
- const Vector scale = Vector::Random(c_->num_cols()).cwiseAbs();
- const Vector x = Vector::Random(c_->num_rows());
- Vector y_expected = Vector::Zero(c_->num_cols());
- c_->LeftMultiplyAndAccumulate(x.data(), y_expected.data());
- y_expected.array() *= scale.array();
- c_->ScaleColumns(scale.data());
- Vector y_observed = Vector::Zero(c_->num_cols());
- c_->LeftMultiplyAndAccumulate(x.data(), y_observed.data());
- EXPECT_GT(y_expected.norm(), 1.);
- EXPECT_LT((y_observed - y_expected).norm(), 1e-12 * y_expected.norm());
- }
- TEST_F(BlockSparseMatrixTest, ScaleColumnsParallelTest) {
- const Vector scale = Vector::Random(c_->num_cols()).cwiseAbs();
- const Vector x = Vector::Random(c_->num_rows());
- Vector y_expected = Vector::Zero(c_->num_cols());
- c_->LeftMultiplyAndAccumulate(x.data(), y_expected.data());
- y_expected.array() *= scale.array();
- c_->ScaleColumns(scale.data(), &context_, kNumThreads);
- Vector y_observed = Vector::Zero(c_->num_cols());
- c_->LeftMultiplyAndAccumulate(x.data(), y_observed.data());
- EXPECT_GT(y_expected.norm(), 1.);
- EXPECT_LT((y_observed - y_expected).norm(), 1e-12 * y_expected.norm());
- }
- TEST_F(BlockSparseMatrixTest, ToDenseMatrixTest) {
- Matrix m_a;
- Matrix m_b;
- a_->ToDenseMatrix(&m_a);
- b_->ToDenseMatrix(&m_b);
- EXPECT_LT((m_a - m_b).norm(), 1e-12);
- }
- TEST_F(BlockSparseMatrixTest, AppendRows) {
- std::unique_ptr<LinearLeastSquaresProblem> problem =
- CreateLinearLeastSquaresProblemFromId(2);
- std::unique_ptr<BlockSparseMatrix> m(
- down_cast<BlockSparseMatrix*>(problem->A.release()));
- a_->AppendRows(*m);
- EXPECT_EQ(a_->num_rows(), 2 * m->num_rows());
- EXPECT_EQ(a_->num_cols(), m->num_cols());
- problem = CreateLinearLeastSquaresProblemFromId(1);
- std::unique_ptr<TripletSparseMatrix> m2(
- down_cast<TripletSparseMatrix*>(problem->A.release()));
- b_->AppendRows(*m2);
- Vector y_a = Vector::Zero(a_->num_rows());
- Vector y_b = Vector::Zero(a_->num_rows());
- for (int i = 0; i < a_->num_cols(); ++i) {
- Vector x = Vector::Zero(a_->num_cols());
- x[i] = 1.0;
- y_a.setZero();
- y_b.setZero();
- a_->RightMultiplyAndAccumulate(x.data(), y_a.data());
- b_->RightMultiplyAndAccumulate(x.data(), y_b.data());
- EXPECT_LT((y_a - y_b).norm(), 1e-12);
- }
- }
- TEST_F(BlockSparseMatrixTest, AppendDeleteRowsTransposedStructure) {
- auto problem = CreateLinearLeastSquaresProblemFromId(2);
- std::unique_ptr<BlockSparseMatrix> m(
- down_cast<BlockSparseMatrix*>(problem->A.release()));
- auto block_structure = a_->block_structure();
- // Several AppendRows and DeleteRowBlocks operations are applied to matrix,
- // with regular and transpose block structures being compared after each
- // operation.
- //
- // Non-negative values encode number of row blocks to remove
- // -1 encodes appending matrix m
- const int num_row_blocks_to_delete[] = {0, -1, 1, -1, 8, -1, 10};
- for (auto& t : num_row_blocks_to_delete) {
- if (t == -1) {
- a_->AppendRows(*m);
- } else if (t > 0) {
- CHECK_GE(block_structure->rows.size(), t);
- a_->DeleteRowBlocks(t);
- }
- auto block_structure = a_->block_structure();
- auto transpose_block_structure = a_->transpose_block_structure();
- ASSERT_NE(block_structure, nullptr);
- ASSERT_NE(transpose_block_structure, nullptr);
- EXPECT_EQ(block_structure->rows.size(),
- transpose_block_structure->cols.size());
- EXPECT_EQ(block_structure->cols.size(),
- transpose_block_structure->rows.size());
- std::vector<int> nnz_col(transpose_block_structure->rows.size());
- for (int i = 0; i < block_structure->cols.size(); ++i) {
- EXPECT_EQ(block_structure->cols[i].position,
- transpose_block_structure->rows[i].block.position);
- const int col_size = transpose_block_structure->rows[i].block.size;
- EXPECT_EQ(block_structure->cols[i].size, col_size);
- for (auto& col_cell : transpose_block_structure->rows[i].cells) {
- int matches = 0;
- const int row_block_id = col_cell.block_id;
- nnz_col[i] +=
- col_size * transpose_block_structure->cols[row_block_id].size;
- for (auto& row_cell : block_structure->rows[row_block_id].cells) {
- if (row_cell.block_id != i) continue;
- EXPECT_EQ(row_cell.position, col_cell.position);
- ++matches;
- }
- EXPECT_EQ(matches, 1);
- }
- EXPECT_EQ(nnz_col[i], transpose_block_structure->rows[i].nnz);
- if (i > 0) {
- nnz_col[i] += nnz_col[i - 1];
- }
- EXPECT_EQ(nnz_col[i], transpose_block_structure->rows[i].cumulative_nnz);
- }
- for (int i = 0; i < block_structure->rows.size(); ++i) {
- EXPECT_EQ(block_structure->rows[i].block.position,
- transpose_block_structure->cols[i].position);
- EXPECT_EQ(block_structure->rows[i].block.size,
- transpose_block_structure->cols[i].size);
- for (auto& row_cell : block_structure->rows[i].cells) {
- int matches = 0;
- const int col_block_id = row_cell.block_id;
- for (auto& col_cell :
- transpose_block_structure->rows[col_block_id].cells) {
- if (col_cell.block_id != i) continue;
- EXPECT_EQ(col_cell.position, row_cell.position);
- ++matches;
- }
- EXPECT_EQ(matches, 1);
- }
- }
- }
- }
- TEST_F(BlockSparseMatrixTest, AppendAndDeleteBlockDiagonalMatrix) {
- const std::vector<Block>& column_blocks = a_->block_structure()->cols;
- const int num_cols =
- column_blocks.back().size + column_blocks.back().position;
- Vector diagonal(num_cols);
- for (int i = 0; i < num_cols; ++i) {
- diagonal(i) = 2 * i * i + 1;
- }
- std::unique_ptr<BlockSparseMatrix> appendage(
- BlockSparseMatrix::CreateDiagonalMatrix(diagonal.data(), column_blocks));
- a_->AppendRows(*appendage);
- Vector y_a, y_b;
- y_a.resize(a_->num_rows());
- y_b.resize(a_->num_rows());
- for (int i = 0; i < a_->num_cols(); ++i) {
- Vector x = Vector::Zero(a_->num_cols());
- x[i] = 1.0;
- y_a.setZero();
- y_b.setZero();
- a_->RightMultiplyAndAccumulate(x.data(), y_a.data());
- b_->RightMultiplyAndAccumulate(x.data(), y_b.data());
- EXPECT_LT((y_a.head(b_->num_rows()) - y_b.head(b_->num_rows())).norm(),
- 1e-12);
- Vector expected_tail = Vector::Zero(a_->num_cols());
- expected_tail(i) = diagonal(i);
- EXPECT_LT((y_a.tail(a_->num_cols()) - expected_tail).norm(), 1e-12);
- }
- a_->DeleteRowBlocks(column_blocks.size());
- EXPECT_EQ(a_->num_rows(), b_->num_rows());
- EXPECT_EQ(a_->num_cols(), b_->num_cols());
- y_a.resize(a_->num_rows());
- y_b.resize(a_->num_rows());
- for (int i = 0; i < a_->num_cols(); ++i) {
- Vector x = Vector::Zero(a_->num_cols());
- x[i] = 1.0;
- y_a.setZero();
- y_b.setZero();
- a_->RightMultiplyAndAccumulate(x.data(), y_a.data());
- b_->RightMultiplyAndAccumulate(x.data(), y_b.data());
- EXPECT_LT((y_a - y_b).norm(), 1e-12);
- }
- }
- TEST(BlockSparseMatrix, CreateDiagonalMatrix) {
- std::vector<Block> column_blocks;
- column_blocks.emplace_back(2, 0);
- column_blocks.emplace_back(1, 2);
- column_blocks.emplace_back(3, 3);
- const int num_cols =
- column_blocks.back().size + column_blocks.back().position;
- Vector diagonal(num_cols);
- for (int i = 0; i < num_cols; ++i) {
- diagonal(i) = 2 * i * i + 1;
- }
- std::unique_ptr<BlockSparseMatrix> m(
- BlockSparseMatrix::CreateDiagonalMatrix(diagonal.data(), column_blocks));
- const CompressedRowBlockStructure* bs = m->block_structure();
- EXPECT_EQ(bs->cols.size(), column_blocks.size());
- for (int i = 0; i < column_blocks.size(); ++i) {
- EXPECT_EQ(bs->cols[i].size, column_blocks[i].size);
- EXPECT_EQ(bs->cols[i].position, column_blocks[i].position);
- }
- EXPECT_EQ(m->num_rows(), m->num_cols());
- Vector x = Vector::Ones(num_cols);
- Vector y = Vector::Zero(num_cols);
- m->RightMultiplyAndAccumulate(x.data(), y.data());
- for (int i = 0; i < num_cols; ++i) {
- EXPECT_NEAR(y[i], diagonal[i], std::numeric_limits<double>::epsilon());
- }
- }
- TEST(BlockSparseMatrix, ToDenseMatrix) {
- {
- std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(0);
- Matrix m_dense;
- m->ToDenseMatrix(&m_dense);
- EXPECT_EQ(m_dense.rows(), 4);
- EXPECT_EQ(m_dense.cols(), 6);
- Matrix m_expected(4, 6);
- m_expected << 1, 2, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 0, 5, 6, 7, 0, 0, 0, 8,
- 9, 10, 0;
- EXPECT_EQ(m_dense, m_expected);
- }
- {
- std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(1);
- Matrix m_dense;
- m->ToDenseMatrix(&m_dense);
- EXPECT_EQ(m_dense.rows(), 3);
- EXPECT_EQ(m_dense.cols(), 6);
- Matrix m_expected(3, 6);
- m_expected << 1, 2, 0, 5, 6, 0, 3, 4, 0, 7, 8, 0, 0, 0, 9, 0, 0, 0;
- EXPECT_EQ(m_dense, m_expected);
- }
- {
- std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(2);
- Matrix m_dense;
- m->ToDenseMatrix(&m_dense);
- EXPECT_EQ(m_dense.rows(), 3);
- EXPECT_EQ(m_dense.cols(), 6);
- Matrix m_expected(3, 6);
- m_expected << 1, 2, 0, 6, 7, 0, 3, 4, 0, 8, 9, 0, 0, 0, 5, 0, 0, 10;
- EXPECT_EQ(m_dense, m_expected);
- }
- }
- TEST(BlockSparseMatrix, ToCRSMatrix) {
- {
- std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(0);
- auto m_crs = m->ToCompressedRowSparseMatrix();
- std::vector<int> rows_expected = {0, 2, 4, 7, 10};
- std::vector<int> cols_expected = {0, 1, 0, 1, 2, 3, 4, 2, 3, 4};
- std::vector<double> values_expected = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
- for (int i = 0; i < rows_expected.size(); ++i) {
- EXPECT_EQ(m_crs->rows()[i], rows_expected[i]);
- }
- for (int i = 0; i < cols_expected.size(); ++i) {
- EXPECT_EQ(m_crs->cols()[i], cols_expected[i]);
- }
- for (int i = 0; i < values_expected.size(); ++i) {
- EXPECT_EQ(m_crs->values()[i], values_expected[i]);
- }
- }
- {
- std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(1);
- auto m_crs = m->ToCompressedRowSparseMatrix();
- std::vector<int> rows_expected = {0, 4, 8, 9};
- std::vector<int> cols_expected = {0, 1, 3, 4, 0, 1, 3, 4, 2};
- std::vector<double> values_expected = {1, 2, 5, 6, 3, 4, 7, 8, 9};
- for (int i = 0; i < rows_expected.size(); ++i) {
- EXPECT_EQ(m_crs->rows()[i], rows_expected[i]);
- }
- for (int i = 0; i < cols_expected.size(); ++i) {
- EXPECT_EQ(m_crs->cols()[i], cols_expected[i]);
- }
- for (int i = 0; i < values_expected.size(); ++i) {
- EXPECT_EQ(m_crs->values()[i], values_expected[i]);
- }
- }
- {
- std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(2);
- auto m_crs = m->ToCompressedRowSparseMatrix();
- std::vector<int> rows_expected = {0, 4, 8, 10};
- std::vector<int> cols_expected = {0, 1, 3, 4, 0, 1, 3, 4, 2, 5};
- std::vector<double> values_expected = {1, 2, 6, 7, 3, 4, 8, 9, 5, 10};
- for (int i = 0; i < rows_expected.size(); ++i) {
- EXPECT_EQ(m_crs->rows()[i], rows_expected[i]);
- }
- for (int i = 0; i < cols_expected.size(); ++i) {
- EXPECT_EQ(m_crs->cols()[i], cols_expected[i]);
- }
- for (int i = 0; i < values_expected.size(); ++i) {
- EXPECT_EQ(m_crs->values()[i], values_expected[i]);
- }
- }
- }
- TEST(BlockSparseMatrix, ToCRSMatrixTranspose) {
- {
- std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(0);
- auto m_crs_transpose = m->ToCompressedRowSparseMatrixTranspose();
- std::vector<int> rows_expected = {0, 2, 4, 6, 8, 10, 10};
- std::vector<int> cols_expected = {0, 1, 0, 1, 2, 3, 2, 3, 2, 3};
- std::vector<double> values_expected = {1, 3, 2, 4, 5, 8, 6, 9, 7, 10};
- EXPECT_EQ(m_crs_transpose->num_nonzeros(), cols_expected.size());
- EXPECT_EQ(m_crs_transpose->num_rows(), rows_expected.size() - 1);
- for (int i = 0; i < rows_expected.size(); ++i) {
- EXPECT_EQ(m_crs_transpose->rows()[i], rows_expected[i]);
- }
- for (int i = 0; i < cols_expected.size(); ++i) {
- EXPECT_EQ(m_crs_transpose->cols()[i], cols_expected[i]);
- }
- for (int i = 0; i < values_expected.size(); ++i) {
- EXPECT_EQ(m_crs_transpose->values()[i], values_expected[i]);
- }
- }
- {
- std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(1);
- auto m_crs_transpose = m->ToCompressedRowSparseMatrixTranspose();
- std::vector<int> rows_expected = {0, 2, 4, 5, 7, 9, 9};
- std::vector<int> cols_expected = {0, 1, 0, 1, 2, 0, 1, 0, 1};
- std::vector<double> values_expected = {1, 3, 2, 4, 9, 5, 7, 6, 8};
- EXPECT_EQ(m_crs_transpose->num_nonzeros(), cols_expected.size());
- EXPECT_EQ(m_crs_transpose->num_rows(), rows_expected.size() - 1);
- for (int i = 0; i < rows_expected.size(); ++i) {
- EXPECT_EQ(m_crs_transpose->rows()[i], rows_expected[i]);
- }
- for (int i = 0; i < cols_expected.size(); ++i) {
- EXPECT_EQ(m_crs_transpose->cols()[i], cols_expected[i]);
- }
- for (int i = 0; i < values_expected.size(); ++i) {
- EXPECT_EQ(m_crs_transpose->values()[i], values_expected[i]);
- }
- }
- {
- std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(2);
- auto m_crs_transpose = m->ToCompressedRowSparseMatrixTranspose();
- std::vector<int> rows_expected = {0, 2, 4, 5, 7, 9, 10};
- std::vector<int> cols_expected = {0, 1, 0, 1, 2, 0, 1, 0, 1, 2};
- std::vector<double> values_expected = {1, 3, 2, 4, 5, 6, 8, 7, 9, 10};
- EXPECT_EQ(m_crs_transpose->num_nonzeros(), cols_expected.size());
- EXPECT_EQ(m_crs_transpose->num_rows(), rows_expected.size() - 1);
- for (int i = 0; i < rows_expected.size(); ++i) {
- EXPECT_EQ(m_crs_transpose->rows()[i], rows_expected[i]);
- }
- for (int i = 0; i < cols_expected.size(); ++i) {
- EXPECT_EQ(m_crs_transpose->cols()[i], cols_expected[i]);
- }
- for (int i = 0; i < values_expected.size(); ++i) {
- EXPECT_EQ(m_crs_transpose->values()[i], values_expected[i]);
- }
- }
- }
- TEST(BlockSparseMatrix, CreateTranspose) {
- constexpr int kNumtrials = 10;
- BlockSparseMatrix::RandomMatrixOptions options;
- options.num_col_blocks = 10;
- options.min_col_block_size = 1;
- options.max_col_block_size = 3;
- options.num_row_blocks = 20;
- options.min_row_block_size = 1;
- options.max_row_block_size = 4;
- options.block_density = 0.25;
- std::mt19937 prng;
- for (int trial = 0; trial < kNumtrials; ++trial) {
- auto a = BlockSparseMatrix::CreateRandomMatrix(options, prng);
- auto ap_bs = std::make_unique<CompressedRowBlockStructure>();
- *ap_bs = *a->block_structure();
- BlockSparseMatrix ap(ap_bs.release());
- std::copy_n(a->values(), a->num_nonzeros(), ap.mutable_values());
- Vector x = Vector::Random(a->num_cols());
- Vector y = Vector::Random(a->num_rows());
- Vector a_x = Vector::Zero(a->num_rows());
- Vector a_t_y = Vector::Zero(a->num_cols());
- Vector ap_x = Vector::Zero(a->num_rows());
- Vector ap_t_y = Vector::Zero(a->num_cols());
- a->RightMultiplyAndAccumulate(x.data(), a_x.data());
- ap.RightMultiplyAndAccumulate(x.data(), ap_x.data());
- EXPECT_NEAR((a_x - ap_x).norm() / a_x.norm(),
- 0.0,
- std::numeric_limits<double>::epsilon());
- a->LeftMultiplyAndAccumulate(y.data(), a_t_y.data());
- ap.LeftMultiplyAndAccumulate(y.data(), ap_t_y.data());
- EXPECT_NEAR((a_t_y - ap_t_y).norm() / a_t_y.norm(),
- 0.0,
- std::numeric_limits<double>::epsilon());
- }
- }
- } // namespace internal
- } // namespace ceres
|