| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2023 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/block_sparse_matrix.h"#include <algorithm>#include <cstddef>#include <memory>#include <numeric>#include <random>#include <vector>#include "ceres/block_structure.h"#include "ceres/crs_matrix.h"#include "ceres/internal/eigen.h"#include "ceres/parallel_for.h"#include "ceres/parallel_vector_ops.h"#include "ceres/small_blas.h"#include "ceres/triplet_sparse_matrix.h"#include "glog/logging.h"#ifndef CERES_NO_CUDA#include "cuda_runtime.h"#endifnamespace ceres::internal {namespace {void ComputeCumulativeNumberOfNonZeros(std::vector<CompressedList>& rows) {  if (rows.empty()) {    return;  }  rows[0].cumulative_nnz = rows[0].nnz;  for (int c = 1; c < rows.size(); ++c) {    const int curr_nnz = rows[c].nnz;    rows[c].cumulative_nnz = curr_nnz + rows[c - 1].cumulative_nnz;  }}template <bool transpose>std::unique_ptr<CompressedRowSparseMatrix>CreateStructureOfCompressedRowSparseMatrix(    const double* values,    int num_rows,    int num_cols,    int num_nonzeros,    const CompressedRowBlockStructure* block_structure) {  auto crs_matrix = std::make_unique<CompressedRowSparseMatrix>(      num_rows, num_cols, num_nonzeros);  auto crs_cols = crs_matrix->mutable_cols();  auto crs_rows = crs_matrix->mutable_rows();  int value_offset = 0;  const int num_row_blocks = block_structure->rows.size();  const auto& cols = block_structure->cols;  *crs_rows++ = 0;  for (int row_block_id = 0; row_block_id < num_row_blocks; ++row_block_id) {    const auto& row_block = block_structure->rows[row_block_id];    // Empty row block: only requires setting row offsets    if (row_block.cells.empty()) {      std::fill(crs_rows, crs_rows + row_block.block.size, value_offset);      crs_rows += row_block.block.size;      continue;    }    int row_nnz = 0;    if constexpr (transpose) {      // Transposed block structure comes with nnz in row-block filled-in      row_nnz = row_block.nnz / row_block.block.size;    } else {      // Nnz field of non-transposed block structure is not filled and it can      // have non-sequential structure (consider the case of jacobian for      // Schur-complement solver: E and F blocks are stored separately).      for (auto& c : row_block.cells) {        row_nnz += cols[c.block_id].size;      }    }    // Row-wise setup of matrix structure    for (int row = 0; row < row_block.block.size; ++row) {      value_offset += row_nnz;      *crs_rows++ = value_offset;      for (auto& c : row_block.cells) {        const int col_block_size = cols[c.block_id].size;        const int col_position = cols[c.block_id].position;        std::iota(crs_cols, crs_cols + col_block_size, col_position);        crs_cols += col_block_size;      }    }  }  return crs_matrix;}template <bool transpose>void UpdateCompressedRowSparseMatrixImpl(    CompressedRowSparseMatrix* crs_matrix,    const double* values,    const CompressedRowBlockStructure* block_structure) {  auto crs_values = crs_matrix->mutable_values();  auto crs_rows = crs_matrix->mutable_rows();  const int num_row_blocks = block_structure->rows.size();  const auto& cols = block_structure->cols;  for (int row_block_id = 0; row_block_id < num_row_blocks; ++row_block_id) {    const auto& row_block = block_structure->rows[row_block_id];    const int row_block_size = row_block.block.size;    const int row_nnz = crs_rows[1] - crs_rows[0];    crs_rows += row_block_size;    if (row_nnz == 0) {      continue;    }    MatrixRef crs_row_block(crs_values, row_block_size, row_nnz);    int col_offset = 0;    for (auto& c : row_block.cells) {      const int col_block_size = cols[c.block_id].size;      auto crs_cell =          crs_row_block.block(0, col_offset, row_block_size, col_block_size);      if constexpr (transpose) {        // Transposed matrix is filled using transposed block-strucutre        ConstMatrixRef cell(            values + c.position, col_block_size, row_block_size);        crs_cell = cell.transpose();      } else {        ConstMatrixRef cell(            values + c.position, row_block_size, col_block_size);        crs_cell = cell;      }      col_offset += col_block_size;    }    crs_values += row_nnz * row_block_size;  }}void SetBlockStructureOfCompressedRowSparseMatrix(    CompressedRowSparseMatrix* crs_matrix,    CompressedRowBlockStructure* block_structure) {  const int num_row_blocks = block_structure->rows.size();  auto& row_blocks = *crs_matrix->mutable_row_blocks();  row_blocks.resize(num_row_blocks);  for (int i = 0; i < num_row_blocks; ++i) {    row_blocks[i] = block_structure->rows[i].block;  }  auto& col_blocks = *crs_matrix->mutable_col_blocks();  col_blocks = block_structure->cols;}}  // namespaceBlockSparseMatrix::BlockSparseMatrix(    CompressedRowBlockStructure* block_structure, bool use_page_locked_memory)    : use_page_locked_memory_(use_page_locked_memory),      num_rows_(0),      num_cols_(0),      num_nonzeros_(0),      block_structure_(block_structure) {  CHECK(block_structure_ != nullptr);  // Count the number of columns in the matrix.  for (auto& col : block_structure_->cols) {    num_cols_ += col.size;  }  // Count the number of non-zero entries and the number of rows in  // the matrix.  for (int i = 0; i < block_structure_->rows.size(); ++i) {    int row_block_size = block_structure_->rows[i].block.size;    num_rows_ += row_block_size;    const std::vector<Cell>& cells = block_structure_->rows[i].cells;    for (const auto& cell : cells) {      int col_block_id = cell.block_id;      int col_block_size = block_structure_->cols[col_block_id].size;      num_nonzeros_ += col_block_size * row_block_size;    }  }  CHECK_GE(num_rows_, 0);  CHECK_GE(num_cols_, 0);  CHECK_GE(num_nonzeros_, 0);  VLOG(2) << "Allocating values array with " << num_nonzeros_ * sizeof(double)          << " bytes.";  // NOLINT  values_ = AllocateValues(num_nonzeros_);  max_num_nonzeros_ = num_nonzeros_;  CHECK(values_ != nullptr);  AddTransposeBlockStructure();}BlockSparseMatrix::~BlockSparseMatrix() { FreeValues(values_); }void BlockSparseMatrix::AddTransposeBlockStructure() {  if (transpose_block_structure_ == nullptr) {    transpose_block_structure_ = CreateTranspose(*block_structure_);  }}void BlockSparseMatrix::SetZero() {  std::fill(values_, values_ + num_nonzeros_, 0.0);}void BlockSparseMatrix::SetZero(ContextImpl* context, int num_threads) {  ParallelSetZero(context, num_threads, values_, num_nonzeros_);}void BlockSparseMatrix::RightMultiplyAndAccumulate(const double* x,                                                   double* y) const {  RightMultiplyAndAccumulate(x, y, nullptr, 1);}void BlockSparseMatrix::RightMultiplyAndAccumulate(const double* x,                                                   double* y,                                                   ContextImpl* context,                                                   int num_threads) const {  CHECK(x != nullptr);  CHECK(y != nullptr);  const auto values = values_;  const auto block_structure = block_structure_.get();  const auto num_row_blocks = block_structure->rows.size();  ParallelFor(context,              0,              num_row_blocks,              num_threads,              [values, block_structure, x, y](int row_block_id) {                const int row_block_pos =                    block_structure->rows[row_block_id].block.position;                const int row_block_size =                    block_structure->rows[row_block_id].block.size;                const auto& cells = block_structure->rows[row_block_id].cells;                for (const auto& cell : cells) {                  const int col_block_id = cell.block_id;                  const int col_block_size =                      block_structure->cols[col_block_id].size;                  const int col_block_pos =                      block_structure->cols[col_block_id].position;                  MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(                      values + cell.position,                      row_block_size,                      col_block_size,                      x + col_block_pos,                      y + row_block_pos);                }              });}// TODO(https://github.com/ceres-solver/ceres-solver/issues/933): This method// might benefit from caching column-block partitionvoid BlockSparseMatrix::LeftMultiplyAndAccumulate(const double* x,                                                  double* y,                                                  ContextImpl* context,                                                  int num_threads) const {  // While utilizing transposed structure allows to perform parallel  // left-multiplication by dense vector, it makes access patterns to matrix  // elements scattered. Thus, multiplication using transposed structure  // is only useful for parallel execution  CHECK(x != nullptr);  CHECK(y != nullptr);  if (transpose_block_structure_ == nullptr || num_threads == 1) {    LeftMultiplyAndAccumulate(x, y);    return;  }  auto transpose_bs = transpose_block_structure_.get();  const auto values = values_;  const int num_col_blocks = transpose_bs->rows.size();  if (!num_col_blocks) {    return;  }  // Use non-zero count as iteration cost for guided parallel-for loop  ParallelFor(      context,      0,      num_col_blocks,      num_threads,      [values, transpose_bs, x, y](int row_block_id) {        int row_block_pos = transpose_bs->rows[row_block_id].block.position;        int row_block_size = transpose_bs->rows[row_block_id].block.size;        auto& cells = transpose_bs->rows[row_block_id].cells;        for (auto& cell : cells) {          const int col_block_id = cell.block_id;          const int col_block_size = transpose_bs->cols[col_block_id].size;          const int col_block_pos = transpose_bs->cols[col_block_id].position;          MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(              values + cell.position,              col_block_size,              row_block_size,              x + col_block_pos,              y + row_block_pos);        }      },      transpose_bs->rows.data(),      [](const CompressedRow& row) { return row.cumulative_nnz; });}void BlockSparseMatrix::LeftMultiplyAndAccumulate(const double* x,                                                  double* y) const {  CHECK(x != nullptr);  CHECK(y != nullptr);  // Single-threaded left products are always computed using a non-transpose  // block structure, because it has linear acess pattern to matrix elements  for (int i = 0; i < block_structure_->rows.size(); ++i) {    int row_block_pos = block_structure_->rows[i].block.position;    int row_block_size = block_structure_->rows[i].block.size;    const auto& cells = block_structure_->rows[i].cells;    for (const auto& cell : cells) {      int col_block_id = cell.block_id;      int col_block_size = block_structure_->cols[col_block_id].size;      int col_block_pos = block_structure_->cols[col_block_id].position;      MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(          values_ + cell.position,          row_block_size,          col_block_size,          x + row_block_pos,          y + col_block_pos);    }  }}void BlockSparseMatrix::SquaredColumnNorm(double* x) const {  CHECK(x != nullptr);  VectorRef(x, num_cols_).setZero();  for (int i = 0; i < block_structure_->rows.size(); ++i) {    int row_block_size = block_structure_->rows[i].block.size;    auto& cells = block_structure_->rows[i].cells;    for (const auto& cell : cells) {      int col_block_id = cell.block_id;      int col_block_size = block_structure_->cols[col_block_id].size;      int col_block_pos = block_structure_->cols[col_block_id].position;      const MatrixRef m(          values_ + cell.position, row_block_size, col_block_size);      VectorRef(x + col_block_pos, col_block_size) += m.colwise().squaredNorm();    }  }}// TODO(https://github.com/ceres-solver/ceres-solver/issues/933): This method// might benefit from caching column-block partitionvoid BlockSparseMatrix::SquaredColumnNorm(double* x,                                          ContextImpl* context,                                          int num_threads) const {  if (transpose_block_structure_ == nullptr || num_threads == 1) {    SquaredColumnNorm(x);    return;  }  CHECK(x != nullptr);  ParallelSetZero(context, num_threads, x, num_cols_);  auto transpose_bs = transpose_block_structure_.get();  const auto values = values_;  const int num_col_blocks = transpose_bs->rows.size();  ParallelFor(      context,      0,      num_col_blocks,      num_threads,      [values, transpose_bs, x](int row_block_id) {        const auto& row = transpose_bs->rows[row_block_id];        for (auto& cell : row.cells) {          const auto& col = transpose_bs->cols[cell.block_id];          const MatrixRef m(values + cell.position, col.size, row.block.size);          VectorRef(x + row.block.position, row.block.size) +=              m.colwise().squaredNorm();        }      },      transpose_bs->rows.data(),      [](const CompressedRow& row) { return row.cumulative_nnz; });}void BlockSparseMatrix::ScaleColumns(const double* scale) {  CHECK(scale != nullptr);  for (int i = 0; i < block_structure_->rows.size(); ++i) {    int row_block_size = block_structure_->rows[i].block.size;    auto& cells = block_structure_->rows[i].cells;    for (const auto& cell : cells) {      int col_block_id = cell.block_id;      int col_block_size = block_structure_->cols[col_block_id].size;      int col_block_pos = block_structure_->cols[col_block_id].position;      MatrixRef m(values_ + cell.position, row_block_size, col_block_size);      m *= ConstVectorRef(scale + col_block_pos, col_block_size).asDiagonal();    }  }}// TODO(https://github.com/ceres-solver/ceres-solver/issues/933): This method// might benefit from caching column-block partitionvoid BlockSparseMatrix::ScaleColumns(const double* scale,                                     ContextImpl* context,                                     int num_threads) {  if (transpose_block_structure_ == nullptr || num_threads == 1) {    ScaleColumns(scale);    return;  }  CHECK(scale != nullptr);  auto transpose_bs = transpose_block_structure_.get();  auto values = values_;  const int num_col_blocks = transpose_bs->rows.size();  ParallelFor(      context,      0,      num_col_blocks,      num_threads,      [values, transpose_bs, scale](int row_block_id) {        const auto& row = transpose_bs->rows[row_block_id];        for (auto& cell : row.cells) {          const auto& col = transpose_bs->cols[cell.block_id];          MatrixRef m(values + cell.position, col.size, row.block.size);          m *= ConstVectorRef(scale + row.block.position, row.block.size)                   .asDiagonal();        }      },      transpose_bs->rows.data(),      [](const CompressedRow& row) { return row.cumulative_nnz; });}std::unique_ptr<CompressedRowSparseMatrix>BlockSparseMatrix::ToCompressedRowSparseMatrixTranspose() const {  auto bs = transpose_block_structure_.get();  auto crs_matrix = CreateStructureOfCompressedRowSparseMatrix<true>(      values(), num_cols_, num_rows_, num_nonzeros_, bs);  SetBlockStructureOfCompressedRowSparseMatrix(crs_matrix.get(), bs);  UpdateCompressedRowSparseMatrixTranspose(crs_matrix.get());  return crs_matrix;}std::unique_ptr<CompressedRowSparseMatrix>BlockSparseMatrix::ToCompressedRowSparseMatrix() const {  auto crs_matrix = CreateStructureOfCompressedRowSparseMatrix<false>(      values(), num_rows_, num_cols_, num_nonzeros_, block_structure_.get());  SetBlockStructureOfCompressedRowSparseMatrix(crs_matrix.get(),                                               block_structure_.get());  UpdateCompressedRowSparseMatrix(crs_matrix.get());  return crs_matrix;}void BlockSparseMatrix::UpdateCompressedRowSparseMatrixTranspose(    CompressedRowSparseMatrix* crs_matrix) const {  CHECK(crs_matrix != nullptr);  CHECK_EQ(crs_matrix->num_rows(), num_cols_);  CHECK_EQ(crs_matrix->num_cols(), num_rows_);  CHECK_EQ(crs_matrix->num_nonzeros(), num_nonzeros_);  UpdateCompressedRowSparseMatrixImpl<true>(      crs_matrix, values(), transpose_block_structure_.get());}void BlockSparseMatrix::UpdateCompressedRowSparseMatrix(    CompressedRowSparseMatrix* crs_matrix) const {  CHECK(crs_matrix != nullptr);  CHECK_EQ(crs_matrix->num_rows(), num_rows_);  CHECK_EQ(crs_matrix->num_cols(), num_cols_);  CHECK_EQ(crs_matrix->num_nonzeros(), num_nonzeros_);  UpdateCompressedRowSparseMatrixImpl<false>(      crs_matrix, values(), block_structure_.get());}void BlockSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const {  CHECK(dense_matrix != nullptr);  dense_matrix->resize(num_rows_, num_cols_);  dense_matrix->setZero();  Matrix& m = *dense_matrix;  for (int i = 0; i < block_structure_->rows.size(); ++i) {    int row_block_pos = block_structure_->rows[i].block.position;    int row_block_size = block_structure_->rows[i].block.size;    auto& cells = block_structure_->rows[i].cells;    for (const auto& cell : cells) {      int col_block_id = cell.block_id;      int col_block_size = block_structure_->cols[col_block_id].size;      int col_block_pos = block_structure_->cols[col_block_id].position;      int jac_pos = cell.position;      m.block(row_block_pos, col_block_pos, row_block_size, col_block_size) +=          MatrixRef(values_ + jac_pos, row_block_size, col_block_size);    }  }}void BlockSparseMatrix::ToTripletSparseMatrix(    TripletSparseMatrix* matrix) const {  CHECK(matrix != nullptr);  matrix->Reserve(num_nonzeros_);  matrix->Resize(num_rows_, num_cols_);  matrix->SetZero();  for (int i = 0; i < block_structure_->rows.size(); ++i) {    int row_block_pos = block_structure_->rows[i].block.position;    int row_block_size = block_structure_->rows[i].block.size;    const auto& cells = block_structure_->rows[i].cells;    for (const auto& cell : cells) {      int col_block_id = cell.block_id;      int col_block_size = block_structure_->cols[col_block_id].size;      int col_block_pos = block_structure_->cols[col_block_id].position;      int jac_pos = cell.position;      for (int r = 0; r < row_block_size; ++r) {        for (int c = 0; c < col_block_size; ++c, ++jac_pos) {          matrix->mutable_rows()[jac_pos] = row_block_pos + r;          matrix->mutable_cols()[jac_pos] = col_block_pos + c;          matrix->mutable_values()[jac_pos] = values_[jac_pos];        }      }    }  }  matrix->set_num_nonzeros(num_nonzeros_);}// Return a pointer to the block structure. We continue to hold// ownership of the object though.const CompressedRowBlockStructure* BlockSparseMatrix::block_structure() const {  return block_structure_.get();}// Return a pointer to the block structure of matrix transpose. We continue to// hold ownership of the object though.const CompressedRowBlockStructure*BlockSparseMatrix::transpose_block_structure() const {  return transpose_block_structure_.get();}void BlockSparseMatrix::ToTextFile(FILE* file) const {  CHECK(file != nullptr);  for (int i = 0; i < block_structure_->rows.size(); ++i) {    const int row_block_pos = block_structure_->rows[i].block.position;    const int row_block_size = block_structure_->rows[i].block.size;    const auto& cells = block_structure_->rows[i].cells;    for (const auto& cell : cells) {      const int col_block_id = cell.block_id;      const int col_block_size = block_structure_->cols[col_block_id].size;      const int col_block_pos = block_structure_->cols[col_block_id].position;      int jac_pos = cell.position;      for (int r = 0; r < row_block_size; ++r) {        for (int c = 0; c < col_block_size; ++c) {          fprintf(file,                  "% 10d % 10d %17f\n",                  row_block_pos + r,                  col_block_pos + c,                  values_[jac_pos++]);        }      }    }  }}std::unique_ptr<BlockSparseMatrix> BlockSparseMatrix::CreateDiagonalMatrix(    const double* diagonal, const std::vector<Block>& column_blocks) {  // Create the block structure for the diagonal matrix.  auto* bs = new CompressedRowBlockStructure();  bs->cols = column_blocks;  int position = 0;  bs->rows.resize(column_blocks.size(), CompressedRow(1));  for (int i = 0; i < column_blocks.size(); ++i) {    CompressedRow& row = bs->rows[i];    row.block = column_blocks[i];    Cell& cell = row.cells[0];    cell.block_id = i;    cell.position = position;    position += row.block.size * row.block.size;  }  // Create the BlockSparseMatrix with the given block structure.  auto matrix = std::make_unique<BlockSparseMatrix>(bs);  matrix->SetZero();  // Fill the values array of the block sparse matrix.  double* values = matrix->mutable_values();  for (const auto& column_block : column_blocks) {    const int size = column_block.size;    for (int j = 0; j < size; ++j) {      // (j + 1) * size is compact way of accessing the (j,j) entry.      values[j * (size + 1)] = diagonal[j];    }    diagonal += size;    values += size * size;  }  return matrix;}void BlockSparseMatrix::AppendRows(const BlockSparseMatrix& m) {  CHECK_EQ(m.num_cols(), num_cols());  const CompressedRowBlockStructure* m_bs = m.block_structure();  CHECK_EQ(m_bs->cols.size(), block_structure_->cols.size());  const int old_num_nonzeros = num_nonzeros_;  const int old_num_row_blocks = block_structure_->rows.size();  block_structure_->rows.resize(old_num_row_blocks + m_bs->rows.size());  for (int i = 0; i < m_bs->rows.size(); ++i) {    const CompressedRow& m_row = m_bs->rows[i];    const int row_block_id = old_num_row_blocks + i;    CompressedRow& row = block_structure_->rows[row_block_id];    row.block.size = m_row.block.size;    row.block.position = num_rows_;    num_rows_ += m_row.block.size;    row.cells.resize(m_row.cells.size());    if (transpose_block_structure_) {      transpose_block_structure_->cols.emplace_back(row.block);    }    for (int c = 0; c < m_row.cells.size(); ++c) {      const int block_id = m_row.cells[c].block_id;      row.cells[c].block_id = block_id;      row.cells[c].position = num_nonzeros_;      const int cell_nnz = m_row.block.size * m_bs->cols[block_id].size;      if (transpose_block_structure_) {        transpose_block_structure_->rows[block_id].cells.emplace_back(            row_block_id, num_nonzeros_);        transpose_block_structure_->rows[block_id].nnz += cell_nnz;      }      num_nonzeros_ += cell_nnz;    }  }  if (num_nonzeros_ > max_num_nonzeros_) {    double* old_values = values_;    values_ = AllocateValues(num_nonzeros_);    std::copy_n(old_values, old_num_nonzeros, values_);    max_num_nonzeros_ = num_nonzeros_;    FreeValues(old_values);  }  std::copy(      m.values(), m.values() + m.num_nonzeros(), values_ + old_num_nonzeros);  if (transpose_block_structure_ == nullptr) {    return;  }  ComputeCumulativeNumberOfNonZeros(transpose_block_structure_->rows);}void BlockSparseMatrix::DeleteRowBlocks(const int delta_row_blocks) {  const int num_row_blocks = block_structure_->rows.size();  const int new_num_row_blocks = num_row_blocks - delta_row_blocks;  int delta_num_nonzeros = 0;  int delta_num_rows = 0;  const std::vector<Block>& column_blocks = block_structure_->cols;  for (int i = 0; i < delta_row_blocks; ++i) {    const CompressedRow& row = block_structure_->rows[num_row_blocks - i - 1];    delta_num_rows += row.block.size;    for (int c = 0; c < row.cells.size(); ++c) {      const Cell& cell = row.cells[c];      delta_num_nonzeros += row.block.size * column_blocks[cell.block_id].size;      if (transpose_block_structure_) {        auto& col_cells = transpose_block_structure_->rows[cell.block_id].cells;        while (!col_cells.empty() &&               col_cells.back().block_id >= new_num_row_blocks) {          const int del_block_id = col_cells.back().block_id;          const int del_block_rows =              block_structure_->rows[del_block_id].block.size;          const int del_block_cols = column_blocks[cell.block_id].size;          const int del_cell_nnz = del_block_rows * del_block_cols;          transpose_block_structure_->rows[cell.block_id].nnz -= del_cell_nnz;          col_cells.pop_back();        }      }    }  }  num_nonzeros_ -= delta_num_nonzeros;  num_rows_ -= delta_num_rows;  block_structure_->rows.resize(new_num_row_blocks);  if (transpose_block_structure_ == nullptr) {    return;  }  for (int i = 0; i < delta_row_blocks; ++i) {    transpose_block_structure_->cols.pop_back();  }  ComputeCumulativeNumberOfNonZeros(transpose_block_structure_->rows);}std::unique_ptr<BlockSparseMatrix> BlockSparseMatrix::CreateRandomMatrix(    const BlockSparseMatrix::RandomMatrixOptions& options,    std::mt19937& prng,    bool use_page_locked_memory) {  CHECK_GT(options.num_row_blocks, 0);  CHECK_GT(options.min_row_block_size, 0);  CHECK_GT(options.max_row_block_size, 0);  CHECK_LE(options.min_row_block_size, options.max_row_block_size);  CHECK_GT(options.block_density, 0.0);  CHECK_LE(options.block_density, 1.0);  std::uniform_int_distribution<int> col_distribution(      options.min_col_block_size, options.max_col_block_size);  std::uniform_int_distribution<int> row_distribution(      options.min_row_block_size, options.max_row_block_size);  auto bs = std::make_unique<CompressedRowBlockStructure>();  if (options.col_blocks.empty()) {    CHECK_GT(options.num_col_blocks, 0);    CHECK_GT(options.min_col_block_size, 0);    CHECK_GT(options.max_col_block_size, 0);    CHECK_LE(options.min_col_block_size, options.max_col_block_size);    // Generate the col block structure.    int col_block_position = 0;    for (int i = 0; i < options.num_col_blocks; ++i) {      const int col_block_size = col_distribution(prng);      bs->cols.emplace_back(col_block_size, col_block_position);      col_block_position += col_block_size;    }  } else {    bs->cols = options.col_blocks;  }  bool matrix_has_blocks = false;  std::uniform_real_distribution<double> uniform01(0.0, 1.0);  while (!matrix_has_blocks) {    VLOG(1) << "Clearing";    bs->rows.clear();    int row_block_position = 0;    int value_position = 0;    for (int r = 0; r < options.num_row_blocks; ++r) {      const int row_block_size = row_distribution(prng);      bs->rows.emplace_back();      CompressedRow& row = bs->rows.back();      row.block.size = row_block_size;      row.block.position = row_block_position;      row_block_position += row_block_size;      for (int c = 0; c < bs->cols.size(); ++c) {        if (uniform01(prng) > options.block_density) continue;        row.cells.emplace_back();        Cell& cell = row.cells.back();        cell.block_id = c;        cell.position = value_position;        value_position += row_block_size * bs->cols[c].size;        matrix_has_blocks = true;      }    }  }  auto matrix =      std::make_unique<BlockSparseMatrix>(bs.release(), use_page_locked_memory);  double* values = matrix->mutable_values();  std::normal_distribution<double> standard_normal_distribution;  std::generate_n(      values, matrix->num_nonzeros(), [&standard_normal_distribution, &prng] {        return standard_normal_distribution(prng);      });  return matrix;}std::unique_ptr<CompressedRowBlockStructure> CreateTranspose(    const CompressedRowBlockStructure& bs) {  auto transpose = std::make_unique<CompressedRowBlockStructure>();  transpose->rows.resize(bs.cols.size());  for (int i = 0; i < bs.cols.size(); ++i) {    transpose->rows[i].block = bs.cols[i];    transpose->rows[i].nnz = 0;  }  transpose->cols.resize(bs.rows.size());  for (int i = 0; i < bs.rows.size(); ++i) {    auto& row = bs.rows[i];    transpose->cols[i] = row.block;    const int nrows = row.block.size;    for (auto& cell : row.cells) {      transpose->rows[cell.block_id].cells.emplace_back(i, cell.position);      const int ncols = transpose->rows[cell.block_id].block.size;      transpose->rows[cell.block_id].nnz += nrows * ncols;    }  }  ComputeCumulativeNumberOfNonZeros(transpose->rows);  return transpose;}double* BlockSparseMatrix::AllocateValues(int size) {  if (!use_page_locked_memory_) {    return new double[size];  }#ifndef CERES_NO_CUDA  double* values = nullptr;  CHECK_EQ(cudaSuccess,           cudaHostAlloc(&values, sizeof(double) * size, cudaHostAllocDefault));  return values;#else  LOG(FATAL) << "Page locked memory requested when CUDA is not available. "             << "This is a Ceres bug; please contact the developers!";  return nullptr;#endif};void BlockSparseMatrix::FreeValues(double*& values) {  if (!use_page_locked_memory_) {    delete[] values;    values = nullptr;    return;  }#ifndef CERES_NO_CUDA  CHECK_EQ(cudaSuccess, cudaFreeHost(values));  values = nullptr;#else  LOG(FATAL) << "Page locked memory requested when CUDA is not available. "             << "This is a Ceres bug; please contact the developers!";#endif};}  // namespace ceres::internal
 |