123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/block_random_access_sparse_matrix.h"
- #include <algorithm>
- #include <memory>
- #include <set>
- #include <utility>
- #include <vector>
- #include "ceres/internal/export.h"
- #include "ceres/parallel_vector_ops.h"
- #include "ceres/triplet_sparse_matrix.h"
- #include "ceres/types.h"
- #include "glog/logging.h"
- namespace ceres::internal {
- BlockRandomAccessSparseMatrix::BlockRandomAccessSparseMatrix(
- const std::vector<Block>& blocks,
- const std::set<std::pair<int, int>>& block_pairs,
- ContextImpl* context,
- int num_threads)
- : blocks_(blocks), context_(context), num_threads_(num_threads) {
- CHECK_LE(blocks.size(), std::numeric_limits<std::int32_t>::max());
- const int num_cols = NumScalarEntries(blocks);
- const int num_blocks = blocks.size();
- std::vector<int> num_cells_at_row(num_blocks);
- for (auto& p : block_pairs) {
- ++num_cells_at_row[p.first];
- }
- auto block_structure_ = new CompressedRowBlockStructure;
- block_structure_->cols = blocks;
- block_structure_->rows.resize(num_blocks);
- auto p = block_pairs.begin();
- int num_nonzeros = 0;
- // Pairs of block indices are sorted lexicographically, thus pairs
- // corresponding to a single row-block are stored in segments of index pairs
- // with constant row-block index and increasing column-block index.
- // CompressedRowBlockStructure is created by traversing block_pairs set.
- for (int row_block_id = 0; row_block_id < num_blocks; ++row_block_id) {
- auto& row = block_structure_->rows[row_block_id];
- row.block = blocks[row_block_id];
- row.cells.reserve(num_cells_at_row[row_block_id]);
- const int row_block_size = blocks[row_block_id].size;
- // Process all index pairs corresponding to the current row block. Because
- // index pairs are sorted lexicographically, cells are being appended to the
- // current row-block till the first change in row-block index
- for (; p != block_pairs.end() && row_block_id == p->first; ++p) {
- const int col_block_id = p->second;
- row.cells.emplace_back(col_block_id, num_nonzeros);
- num_nonzeros += row_block_size * blocks[col_block_id].size;
- }
- }
- bsm_ = std::make_unique<BlockSparseMatrix>(block_structure_);
- VLOG(1) << "Matrix Size [" << num_cols << "," << num_cols << "] "
- << num_nonzeros;
- double* values = bsm_->mutable_values();
- for (int row_block_id = 0; row_block_id < num_blocks; ++row_block_id) {
- const auto& cells = block_structure_->rows[row_block_id].cells;
- for (auto& c : cells) {
- const int col_block_id = c.block_id;
- double* const data = values + c.position;
- layout_[IntPairToInt64(row_block_id, col_block_id)] =
- std::make_unique<CellInfo>(data);
- }
- }
- }
- CellInfo* BlockRandomAccessSparseMatrix::GetCell(int row_block_id,
- int col_block_id,
- int* row,
- int* col,
- int* row_stride,
- int* col_stride) {
- const auto it = layout_.find(IntPairToInt64(row_block_id, col_block_id));
- if (it == layout_.end()) {
- return nullptr;
- }
- // Each cell is stored contiguously as its own little dense matrix.
- *row = 0;
- *col = 0;
- *row_stride = blocks_[row_block_id].size;
- *col_stride = blocks_[col_block_id].size;
- return it->second.get();
- }
- // Assume that the user does not hold any locks on any cell blocks
- // when they are calling SetZero.
- void BlockRandomAccessSparseMatrix::SetZero() {
- bsm_->SetZero(context_, num_threads_);
- }
- void BlockRandomAccessSparseMatrix::SymmetricRightMultiplyAndAccumulate(
- const double* x, double* y) const {
- const auto bs = bsm_->block_structure();
- const auto values = bsm_->values();
- const int num_blocks = blocks_.size();
- for (int row_block_id = 0; row_block_id < num_blocks; ++row_block_id) {
- const auto& row_block = bs->rows[row_block_id];
- const int row_block_size = row_block.block.size;
- const int row_block_pos = row_block.block.position;
- for (auto& c : row_block.cells) {
- const int col_block_id = c.block_id;
- const int col_block_size = blocks_[col_block_id].size;
- const int col_block_pos = blocks_[col_block_id].position;
- MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
- values + c.position,
- row_block_size,
- col_block_size,
- x + col_block_pos,
- y + row_block_pos);
- if (col_block_id == row_block_id) {
- continue;
- }
- // Since the matrix is symmetric, but only the upper triangular
- // part is stored, if the block being accessed is not a diagonal
- // block, then use the same block to do the corresponding lower
- // triangular multiply also
- MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
- values + c.position,
- row_block_size,
- col_block_size,
- x + row_block_pos,
- y + col_block_pos);
- }
- }
- }
- } // namespace ceres::internal
|