123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/block_random_access_diagonal_matrix.h"
- #include <limits>
- #include <memory>
- #include <vector>
- #include "Eigen/Cholesky"
- #include "ceres/internal/eigen.h"
- #include "glog/logging.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- class BlockRandomAccessDiagonalMatrixTest : public ::testing::Test {
- public:
- void SetUp() override {
- std::vector<Block> blocks;
- blocks.emplace_back(3, 0);
- blocks.emplace_back(4, 3);
- blocks.emplace_back(5, 7);
- const int num_rows = 3 + 4 + 5;
- num_nonzeros_ = 3 * 3 + 4 * 4 + 5 * 5;
- m_ =
- std::make_unique<BlockRandomAccessDiagonalMatrix>(blocks, &context_, 1);
- EXPECT_EQ(m_->num_rows(), num_rows);
- EXPECT_EQ(m_->num_cols(), num_rows);
- for (int i = 0; i < blocks.size(); ++i) {
- const int row_block_id = i;
- int col_block_id;
- int row;
- int col;
- int row_stride;
- int col_stride;
- for (int j = 0; j < blocks.size(); ++j) {
- col_block_id = j;
- CellInfo* cell = m_->GetCell(
- row_block_id, col_block_id, &row, &col, &row_stride, &col_stride);
- // Off diagonal entries are not present.
- if (i != j) {
- EXPECT_TRUE(cell == nullptr);
- continue;
- }
- EXPECT_TRUE(cell != nullptr);
- EXPECT_EQ(row, 0);
- EXPECT_EQ(col, 0);
- EXPECT_EQ(row_stride, blocks[row_block_id].size);
- EXPECT_EQ(col_stride, blocks[col_block_id].size);
- // Write into the block
- MatrixRef(cell->values, row_stride, col_stride)
- .block(row,
- col,
- blocks[row_block_id].size,
- blocks[col_block_id].size) =
- (row_block_id + 1) * (col_block_id + 1) *
- Matrix::Ones(blocks[row_block_id].size,
- blocks[col_block_id].size) +
- Matrix::Identity(blocks[row_block_id].size,
- blocks[row_block_id].size);
- }
- }
- }
- protected:
- ContextImpl context_;
- int num_nonzeros_;
- std::unique_ptr<BlockRandomAccessDiagonalMatrix> m_;
- };
- TEST_F(BlockRandomAccessDiagonalMatrixTest, MatrixContents) {
- auto* crsm = m_->matrix();
- EXPECT_EQ(crsm->num_nonzeros(), num_nonzeros_);
- Matrix dense;
- crsm->ToDenseMatrix(&dense);
- double kTolerance = 1e-14;
- // (0,0)
- EXPECT_NEAR(
- (dense.block(0, 0, 3, 3) - (Matrix::Ones(3, 3) + Matrix::Identity(3, 3)))
- .norm(),
- 0.0,
- kTolerance);
- // (1,1)
- EXPECT_NEAR((dense.block(3, 3, 4, 4) -
- (2 * 2 * Matrix::Ones(4, 4) + Matrix::Identity(4, 4)))
- .norm(),
- 0.0,
- kTolerance);
- // (1,1)
- EXPECT_NEAR((dense.block(7, 7, 5, 5) -
- (3 * 3 * Matrix::Ones(5, 5) + Matrix::Identity(5, 5)))
- .norm(),
- 0.0,
- kTolerance);
- // There is nothing else in the matrix besides these four blocks.
- EXPECT_NEAR(
- dense.norm(),
- sqrt(6 * 1.0 + 3 * 4.0 + 12 * 16.0 + 4 * 25.0 + 20 * 81.0 + 5 * 100.0),
- kTolerance);
- }
- TEST_F(BlockRandomAccessDiagonalMatrixTest, RightMultiplyAndAccumulate) {
- double kTolerance = 1e-14;
- auto* crsm = m_->matrix();
- Matrix dense;
- crsm->ToDenseMatrix(&dense);
- Vector x = Vector::Random(dense.rows());
- Vector expected_y = dense * x;
- Vector actual_y = Vector::Zero(dense.rows());
- m_->RightMultiplyAndAccumulate(x.data(), actual_y.data());
- EXPECT_NEAR((expected_y - actual_y).norm(), 0, kTolerance);
- }
- TEST_F(BlockRandomAccessDiagonalMatrixTest, Invert) {
- double kTolerance = 1e-14;
- auto* crsm = m_->matrix();
- Matrix dense;
- crsm->ToDenseMatrix(&dense);
- Matrix expected_inverse =
- dense.llt().solve(Matrix::Identity(dense.rows(), dense.rows()));
- m_->Invert();
- crsm->ToDenseMatrix(&dense);
- EXPECT_NEAR((expected_inverse - dense).norm(), 0.0, kTolerance);
- }
- } // namespace ceres::internal
|