123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: keir@google.com (Keir Mierle)
- #include "ceres/internal/autodiff.h"
- #include <algorithm>
- #include <iterator>
- #include <random>
- #include "gtest/gtest.h"
- namespace ceres::internal {
- template <typename T>
- inline T& RowMajorAccess(T* base, int rows, int cols, int i, int j) {
- return base[cols * i + j];
- }
- // Do (symmetric) finite differencing using the given function object 'b' of
- // type 'B' and scalar type 'T' with step size 'del'.
- //
- // The type B should have a signature
- //
- // bool operator()(T const *, T *) const;
- //
- // which maps a vector of parameters to a vector of outputs.
- template <typename B, typename T, int M, int N>
- inline bool SymmetricDiff(const B& b,
- const T par[N],
- T del, // step size.
- T fun[M],
- T jac[M * N]) { // row-major.
- if (!b(par, fun)) {
- return false;
- }
- // Temporary parameter vector.
- T tmp_par[N];
- for (int j = 0; j < N; ++j) {
- tmp_par[j] = par[j];
- }
- // For each dimension, we do one forward step and one backward step in
- // parameter space, and store the output vector vectors in these vectors.
- T fwd_fun[M];
- T bwd_fun[M];
- for (int j = 0; j < N; ++j) {
- // Forward step.
- tmp_par[j] = par[j] + del;
- if (!b(tmp_par, fwd_fun)) {
- return false;
- }
- // Backward step.
- tmp_par[j] = par[j] - del;
- if (!b(tmp_par, bwd_fun)) {
- return false;
- }
- // Symmetric differencing:
- // f'(a) = (f(a + h) - f(a - h)) / (2 h)
- for (int i = 0; i < M; ++i) {
- RowMajorAccess(jac, M, N, i, j) =
- (fwd_fun[i] - bwd_fun[i]) / (T(2) * del);
- }
- // Restore our temporary vector.
- tmp_par[j] = par[j];
- }
- return true;
- }
- template <typename A>
- inline void QuaternionToScaledRotation(A const q[4], A R[3 * 3]) {
- // Make convenient names for elements of q.
- A a = q[0];
- A b = q[1];
- A c = q[2];
- A d = q[3];
- // This is not to eliminate common sub-expression, but to
- // make the lines shorter so that they fit in 80 columns!
- A aa = a * a;
- A ab = a * b;
- A ac = a * c;
- A ad = a * d;
- A bb = b * b;
- A bc = b * c;
- A bd = b * d;
- A cc = c * c;
- A cd = c * d;
- A dd = d * d;
- #define R(i, j) RowMajorAccess(R, 3, 3, (i), (j))
- R(0, 0) = aa + bb - cc - dd;
- R(0, 1) = A(2) * (bc - ad);
- R(0, 2) = A(2) * (ac + bd); // NOLINT
- R(1, 0) = A(2) * (ad + bc);
- R(1, 1) = aa - bb + cc - dd;
- R(1, 2) = A(2) * (cd - ab); // NOLINT
- R(2, 0) = A(2) * (bd - ac);
- R(2, 1) = A(2) * (ab + cd);
- R(2, 2) = aa - bb - cc + dd; // NOLINT
- #undef R
- }
- // A structure for projecting a 3x4 camera matrix and a
- // homogeneous 3D point, to a 2D inhomogeneous point.
- struct Projective {
- // Function that takes P and X as separate vectors:
- // P, X -> x
- template <typename A>
- bool operator()(A const P[12], A const X[4], A x[2]) const {
- A PX[3];
- for (int i = 0; i < 3; ++i) {
- PX[i] = RowMajorAccess(P, 3, 4, i, 0) * X[0] +
- RowMajorAccess(P, 3, 4, i, 1) * X[1] +
- RowMajorAccess(P, 3, 4, i, 2) * X[2] +
- RowMajorAccess(P, 3, 4, i, 3) * X[3];
- }
- if (PX[2] != 0.0) {
- x[0] = PX[0] / PX[2];
- x[1] = PX[1] / PX[2];
- return true;
- }
- return false;
- }
- // Version that takes P and X packed in one vector:
- //
- // (P, X) -> x
- //
- template <typename A>
- bool operator()(A const P_X[12 + 4], A x[2]) const {
- return operator()(P_X + 0, P_X + 12, x);
- }
- };
- // Test projective camera model projector.
- TEST(AutoDiff, ProjectiveCameraModel) {
- double const tol = 1e-10; // floating-point tolerance.
- double const del = 1e-4; // finite-difference step.
- double const err = 1e-6; // finite-difference tolerance.
- Projective b;
- std::mt19937 prng;
- std::uniform_real_distribution<double> uniform01(0.0, 1.0);
- // Make random P and X, in a single vector.
- double PX[12 + 4];
- std::generate(std::begin(PX), std::end(PX), [&prng, &uniform01] {
- return uniform01(prng);
- });
- // Handy names for the P and X parts.
- double* P = PX + 0;
- double* X = PX + 12;
- // Apply the mapping, to get image point b_x.
- double b_x[2];
- b(P, X, b_x);
- // Use finite differencing to estimate the Jacobian.
- double fd_x[2];
- double fd_J[2 * (12 + 4)];
- ASSERT_TRUE(
- (SymmetricDiff<Projective, double, 2, 12 + 4>(b, PX, del, fd_x, fd_J)));
- for (int i = 0; i < 2; ++i) {
- ASSERT_NEAR(fd_x[i], b_x[i], tol);
- }
- // Use automatic differentiation to compute the Jacobian.
- double ad_x1[2];
- double J_PX[2 * (12 + 4)];
- {
- double* parameters[] = {PX};
- double* jacobians[] = {J_PX};
- ASSERT_TRUE((AutoDifferentiate<2, StaticParameterDims<12 + 4>>(
- b, parameters, 2, ad_x1, jacobians)));
- for (int i = 0; i < 2; ++i) {
- ASSERT_NEAR(ad_x1[i], b_x[i], tol);
- }
- }
- // Use automatic differentiation (again), with two arguments.
- {
- double ad_x2[2];
- double J_P[2 * 12];
- double J_X[2 * 4];
- double* parameters[] = {P, X};
- double* jacobians[] = {J_P, J_X};
- ASSERT_TRUE((AutoDifferentiate<2, StaticParameterDims<12, 4>>(
- b, parameters, 2, ad_x2, jacobians)));
- for (int i = 0; i < 2; ++i) {
- ASSERT_NEAR(ad_x2[i], b_x[i], tol);
- }
- // Now compare the jacobians we got.
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 12 + 4; ++j) {
- ASSERT_NEAR(J_PX[(12 + 4) * i + j], fd_J[(12 + 4) * i + j], err);
- }
- for (int j = 0; j < 12; ++j) {
- ASSERT_NEAR(J_PX[(12 + 4) * i + j], J_P[12 * i + j], tol);
- }
- for (int j = 0; j < 4; ++j) {
- ASSERT_NEAR(J_PX[(12 + 4) * i + 12 + j], J_X[4 * i + j], tol);
- }
- }
- }
- }
- // Object to implement the projection by a calibrated camera.
- struct Metric {
- // The mapping is
- //
- // q, c, X -> x = dehomg(R(q) (X - c))
- //
- // where q is a quaternion and c is the center of projection.
- //
- // This function takes three input vectors.
- template <typename A>
- bool operator()(A const q[4], A const c[3], A const X[3], A x[2]) const {
- A R[3 * 3];
- QuaternionToScaledRotation(q, R);
- // Convert the quaternion mapping all the way to projective matrix.
- A P[3 * 4];
- // Set P(:, 1:3) = R
- for (int i = 0; i < 3; ++i) {
- for (int j = 0; j < 3; ++j) {
- RowMajorAccess(P, 3, 4, i, j) = RowMajorAccess(R, 3, 3, i, j);
- }
- }
- // Set P(:, 4) = - R c
- for (int i = 0; i < 3; ++i) {
- RowMajorAccess(P, 3, 4, i, 3) = -(RowMajorAccess(R, 3, 3, i, 0) * c[0] +
- RowMajorAccess(R, 3, 3, i, 1) * c[1] +
- RowMajorAccess(R, 3, 3, i, 2) * c[2]);
- }
- A X1[4] = {X[0], X[1], X[2], A(1)};
- Projective p;
- return p(P, X1, x);
- }
- // A version that takes a single vector.
- template <typename A>
- bool operator()(A const q_c_X[4 + 3 + 3], A x[2]) const {
- return operator()(q_c_X, q_c_X + 4, q_c_X + 4 + 3, x);
- }
- };
- // This test is similar in structure to the previous one.
- TEST(AutoDiff, Metric) {
- double const tol = 1e-10; // floating-point tolerance.
- double const del = 1e-4; // finite-difference step.
- double const err = 2e-5; // finite-difference tolerance.
- Metric b;
- // Make random parameter vector.
- double qcX[4 + 3 + 3];
- std::mt19937 prng;
- std::uniform_real_distribution<double> uniform01(0.0, 1.0);
- std::generate(std::begin(qcX), std::end(qcX), [&prng, &uniform01] {
- return uniform01(prng);
- });
- // Handy names.
- double* q = qcX;
- double* c = qcX + 4;
- double* X = qcX + 4 + 3;
- // Compute projection, b_x.
- double b_x[2];
- ASSERT_TRUE(b(q, c, X, b_x));
- // Finite differencing estimate of Jacobian.
- double fd_x[2];
- double fd_J[2 * (4 + 3 + 3)];
- ASSERT_TRUE(
- (SymmetricDiff<Metric, double, 2, 4 + 3 + 3>(b, qcX, del, fd_x, fd_J)));
- for (int i = 0; i < 2; ++i) {
- ASSERT_NEAR(fd_x[i], b_x[i], tol);
- }
- // Automatic differentiation.
- double ad_x[2];
- double J_q[2 * 4];
- double J_c[2 * 3];
- double J_X[2 * 3];
- double* parameters[] = {q, c, X};
- double* jacobians[] = {J_q, J_c, J_X};
- ASSERT_TRUE((AutoDifferentiate<2, StaticParameterDims<4, 3, 3>>(
- b, parameters, 2, ad_x, jacobians)));
- for (int i = 0; i < 2; ++i) {
- ASSERT_NEAR(ad_x[i], b_x[i], tol);
- }
- // Compare the pieces.
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 4; ++j) {
- ASSERT_NEAR(J_q[4 * i + j], fd_J[(4 + 3 + 3) * i + j], err);
- }
- for (int j = 0; j < 3; ++j) {
- ASSERT_NEAR(J_c[3 * i + j], fd_J[(4 + 3 + 3) * i + j + 4], err);
- }
- for (int j = 0; j < 3; ++j) {
- ASSERT_NEAR(J_X[3 * i + j], fd_J[(4 + 3 + 3) * i + j + 4 + 3], err);
- }
- }
- }
- struct VaryingResidualFunctor {
- template <typename T>
- bool operator()(const T x[2], T* y) const {
- for (int i = 0; i < num_residuals; ++i) {
- y[i] = T(i) * x[0] * x[1] * x[1];
- }
- return true;
- }
- int num_residuals;
- };
- TEST(AutoDiff, VaryingNumberOfResidualsForOneCostFunctorType) {
- double x[2] = {1.0, 5.5};
- double* parameters[] = {x};
- const int kMaxResiduals = 10;
- double J_x[2 * kMaxResiduals];
- double residuals[kMaxResiduals];
- double* jacobians[] = {J_x};
- // Use a single functor, but tweak it to produce different numbers of
- // residuals.
- VaryingResidualFunctor functor;
- for (int num_residuals = 1; num_residuals < kMaxResiduals; ++num_residuals) {
- // Tweak the number of residuals to produce.
- functor.num_residuals = num_residuals;
- // Run autodiff with the new number of residuals.
- ASSERT_TRUE((AutoDifferentiate<DYNAMIC, StaticParameterDims<2>>(
- functor, parameters, num_residuals, residuals, jacobians)));
- const double kTolerance = 1e-14;
- for (int i = 0; i < num_residuals; ++i) {
- EXPECT_NEAR(J_x[2 * i + 0], i * x[1] * x[1], kTolerance) << "i: " << i;
- EXPECT_NEAR(J_x[2 * i + 1], 2 * i * x[0] * x[1], kTolerance)
- << "i: " << i;
- }
- }
- }
- struct Residual1Param {
- template <typename T>
- bool operator()(const T* x0, T* y) const {
- y[0] = *x0;
- return true;
- }
- };
- struct Residual2Param {
- template <typename T>
- bool operator()(const T* x0, const T* x1, T* y) const {
- y[0] = *x0 + pow(*x1, 2);
- return true;
- }
- };
- struct Residual3Param {
- template <typename T>
- bool operator()(const T* x0, const T* x1, const T* x2, T* y) const {
- y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3);
- return true;
- }
- };
- struct Residual4Param {
- template <typename T>
- bool operator()(
- const T* x0, const T* x1, const T* x2, const T* x3, T* y) const {
- y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4);
- return true;
- }
- };
- struct Residual5Param {
- template <typename T>
- bool operator()(const T* x0,
- const T* x1,
- const T* x2,
- const T* x3,
- const T* x4,
- T* y) const {
- y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5);
- return true;
- }
- };
- struct Residual6Param {
- template <typename T>
- bool operator()(const T* x0,
- const T* x1,
- const T* x2,
- const T* x3,
- const T* x4,
- const T* x5,
- T* y) const {
- y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
- pow(*x5, 6);
- return true;
- }
- };
- struct Residual7Param {
- template <typename T>
- bool operator()(const T* x0,
- const T* x1,
- const T* x2,
- const T* x3,
- const T* x4,
- const T* x5,
- const T* x6,
- T* y) const {
- y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
- pow(*x5, 6) + pow(*x6, 7);
- return true;
- }
- };
- struct Residual8Param {
- template <typename T>
- bool operator()(const T* x0,
- const T* x1,
- const T* x2,
- const T* x3,
- const T* x4,
- const T* x5,
- const T* x6,
- const T* x7,
- T* y) const {
- y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
- pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8);
- return true;
- }
- };
- struct Residual9Param {
- template <typename T>
- bool operator()(const T* x0,
- const T* x1,
- const T* x2,
- const T* x3,
- const T* x4,
- const T* x5,
- const T* x6,
- const T* x7,
- const T* x8,
- T* y) const {
- y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
- pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8) + pow(*x8, 9);
- return true;
- }
- };
- struct Residual10Param {
- template <typename T>
- bool operator()(const T* x0,
- const T* x1,
- const T* x2,
- const T* x3,
- const T* x4,
- const T* x5,
- const T* x6,
- const T* x7,
- const T* x8,
- const T* x9,
- T* y) const {
- y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
- pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8) + pow(*x8, 9) + pow(*x9, 10);
- return true;
- }
- };
- TEST(AutoDiff, VariadicAutoDiff) {
- double x[10];
- double residual = 0;
- double* parameters[10];
- double jacobian_values[10];
- double* jacobians[10];
- for (int i = 0; i < 10; ++i) {
- x[i] = 2.0;
- parameters[i] = x + i;
- jacobians[i] = jacobian_values + i;
- }
- {
- Residual1Param functor;
- int num_variables = 1;
- EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1>>(
- functor, parameters, 1, &residual, jacobians)));
- EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
- for (int i = 0; i < num_variables; ++i) {
- EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
- }
- }
- {
- Residual2Param functor;
- int num_variables = 2;
- EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1>>(
- functor, parameters, 1, &residual, jacobians)));
- EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
- for (int i = 0; i < num_variables; ++i) {
- EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
- }
- }
- {
- Residual3Param functor;
- int num_variables = 3;
- EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1, 1>>(
- functor, parameters, 1, &residual, jacobians)));
- EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
- for (int i = 0; i < num_variables; ++i) {
- EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
- }
- }
- {
- Residual4Param functor;
- int num_variables = 4;
- EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1>>(
- functor, parameters, 1, &residual, jacobians)));
- EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
- for (int i = 0; i < num_variables; ++i) {
- EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
- }
- }
- {
- Residual5Param functor;
- int num_variables = 5;
- EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1>>(
- functor, parameters, 1, &residual, jacobians)));
- EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
- for (int i = 0; i < num_variables; ++i) {
- EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
- }
- }
- {
- Residual6Param functor;
- int num_variables = 6;
- EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1, 1>>(
- functor, parameters, 1, &residual, jacobians)));
- EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
- for (int i = 0; i < num_variables; ++i) {
- EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
- }
- }
- {
- Residual7Param functor;
- int num_variables = 7;
- EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1, 1, 1>>(
- functor, parameters, 1, &residual, jacobians)));
- EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
- for (int i = 0; i < num_variables; ++i) {
- EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
- }
- }
- {
- Residual8Param functor;
- int num_variables = 8;
- EXPECT_TRUE(
- (AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1, 1, 1, 1>>(
- functor, parameters, 1, &residual, jacobians)));
- EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
- for (int i = 0; i < num_variables; ++i) {
- EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
- }
- }
- {
- Residual9Param functor;
- int num_variables = 9;
- EXPECT_TRUE(
- (AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1, 1, 1, 1, 1>>(
- functor, parameters, 1, &residual, jacobians)));
- EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
- for (int i = 0; i < num_variables; ++i) {
- EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
- }
- }
- {
- Residual10Param functor;
- int num_variables = 10;
- EXPECT_TRUE((
- AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1, 1, 1, 1, 1, 1>>(
- functor, parameters, 1, &residual, jacobians)));
- EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
- for (int i = 0; i < num_variables; ++i) {
- EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
- }
- }
- }
- // This is fragile test that triggers the alignment bug on
- // i686-apple-darwin10-llvm-g++-4.2 (GCC) 4.2.1. It is quite possible,
- // that other combinations of operating system + compiler will
- // re-arrange the operations in this test.
- //
- // But this is the best (and only) way we know of to trigger this
- // problem for now. A more robust solution that guarantees the
- // alignment of Eigen types used for automatic differentiation would
- // be nice.
- TEST(AutoDiff, AlignedAllocationTest) {
- // This int is needed to allocate 16 bits on the stack, so that the
- // next allocation is not aligned by default.
- char y = 0;
- // This is needed to prevent the compiler from optimizing y out of
- // this function.
- y += 1;
- using JetT = Jet<double, 2>;
- FixedArray<JetT, (256 * 7) / sizeof(JetT)> x(3);
- // Need this to makes sure that x does not get optimized out.
- x[0] = x[0] + JetT(1.0);
- }
- } // namespace ceres::internal
|