123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2020 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: darius.rueckert@fau.de (Darius Rueckert)
- //
- //
- #ifndef CERES_INTERNAL_AUTODIFF_BENCHMARK_BRDF_COST_FUNCTION_H_
- #define CERES_INTERNAL_AUTODIFF_BENCHMARK_BRDF_COST_FUNCTION_H_
- #include <Eigen/Core>
- #include <cmath>
- #include "ceres/constants.h"
- namespace ceres {
- // The brdf is based on:
- // Burley, Brent, and Walt Disney Animation Studios. "Physically-based shading
- // at disney." ACM SIGGRAPH. Vol. 2012. 2012.
- //
- // The implementation is based on:
- // https://github.com/wdas/brdf/blob/master/src/brdfs/disney.brdf
- struct Brdf {
- public:
- template <typename T>
- inline bool operator()(const T* const material,
- const T* const c_ptr,
- const T* const n_ptr,
- const T* const v_ptr,
- const T* const l_ptr,
- const T* const x_ptr,
- const T* const y_ptr,
- T* residual) const {
- using Vec3 = Eigen::Matrix<T, 3, 1>;
- T metallic = material[0];
- T subsurface = material[1];
- T specular = material[2];
- T roughness = material[3];
- T specular_tint = material[4];
- T anisotropic = material[5];
- T sheen = material[6];
- T sheen_tint = material[7];
- T clearcoat = material[8];
- T clearcoat_gloss = material[9];
- Eigen::Map<const Vec3> c(c_ptr);
- Eigen::Map<const Vec3> n(n_ptr);
- Eigen::Map<const Vec3> v(v_ptr);
- Eigen::Map<const Vec3> l(l_ptr);
- Eigen::Map<const Vec3> x(x_ptr);
- Eigen::Map<const Vec3> y(y_ptr);
- const T n_dot_l = n.dot(l);
- const T n_dot_v = n.dot(v);
- const Vec3 l_p_v = l + v;
- const Vec3 h = l_p_v / l_p_v.norm();
- const T n_dot_h = n.dot(h);
- const T l_dot_h = l.dot(h);
- const T h_dot_x = h.dot(x);
- const T h_dot_y = h.dot(y);
- const T c_dlum = T(0.3) * c[0] + T(0.6) * c[1] + T(0.1) * c[2];
- const Vec3 c_tint = c / c_dlum;
- const Vec3 c_spec0 =
- Lerp(specular * T(0.08) *
- Lerp(Vec3(T(1), T(1), T(1)), c_tint, specular_tint),
- c,
- metallic);
- const Vec3 c_sheen = Lerp(Vec3(T(1), T(1), T(1)), c_tint, sheen_tint);
- // Diffuse fresnel - go from 1 at normal incidence to .5 at grazing
- // and mix in diffuse retro-reflection based on roughness
- const T fl = SchlickFresnel(n_dot_l);
- const T fv = SchlickFresnel(n_dot_v);
- const T fd_90 = T(0.5) + T(2) * l_dot_h * l_dot_h * roughness;
- const T fd = Lerp(T(1), fd_90, fl) * Lerp(T(1), fd_90, fv);
- // Based on Hanrahan-Krueger brdf approximation of isotropic bssrdf
- // 1.25 scale is used to (roughly) preserve albedo
- // Fss90 used to "flatten" retroreflection based on roughness
- const T fss_90 = l_dot_h * l_dot_h * roughness;
- const T fss = Lerp(T(1), fss_90, fl) * Lerp(T(1), fss_90, fv);
- const T ss =
- T(1.25) * (fss * (T(1) / (n_dot_l + n_dot_v) - T(0.5)) + T(0.5));
- // specular
- const T eps = T(0.001);
- const T aspct = Aspect(anisotropic);
- const T ax_temp = Square(roughness) / aspct;
- const T ay_temp = Square(roughness) * aspct;
- const T ax = (ax_temp < eps ? eps : ax_temp);
- const T ay = (ay_temp < eps ? eps : ay_temp);
- const T ds = GTR2Aniso(n_dot_h, h_dot_x, h_dot_y, ax, ay);
- const T fh = SchlickFresnel(l_dot_h);
- const Vec3 fs = Lerp(c_spec0, Vec3(T(1), T(1), T(1)), fh);
- const T roughg = Square(roughness * T(0.5) + T(0.5));
- const T ggxn_dot_l = SmithG_GGX(n_dot_l, roughg);
- const T ggxn_dot_v = SmithG_GGX(n_dot_v, roughg);
- const T gs = ggxn_dot_l * ggxn_dot_v;
- // sheen
- const Vec3 f_sheen = fh * sheen * c_sheen;
- // clearcoat (ior = 1.5 -> F0 = 0.04)
- const T a = Lerp(T(0.1), T(0.001), clearcoat_gloss);
- const T dr = GTR1(n_dot_h, a);
- const T fr = Lerp(T(0.04), T(1), fh);
- const T cggxn_dot_l = SmithG_GGX(n_dot_l, T(0.25));
- const T cggxn_dot_v = SmithG_GGX(n_dot_v, T(0.25));
- const T gr = cggxn_dot_l * cggxn_dot_v;
- const Vec3 result_no_cosine =
- (T(1.0 / constants::pi) * Lerp(fd, ss, subsurface) * c + f_sheen) *
- (T(1) - metallic) +
- gs * fs * ds +
- Vec3(T(0.25), T(0.25), T(0.25)) * clearcoat * gr * fr * dr;
- const Vec3 result = n_dot_l * result_no_cosine;
- residual[0] = result(0);
- residual[1] = result(1);
- residual[2] = result(2);
- return true;
- }
- template <typename T>
- inline T SchlickFresnel(const T& u) const {
- T m = T(1) - u;
- const T m2 = m * m;
- return m2 * m2 * m; // (1-u)^5
- }
- template <typename T>
- inline T Aspect(const T& anisotropic) const {
- return T(sqrt(T(1) - anisotropic * T(0.9)));
- }
- template <typename T>
- inline T SmithG_GGX(const T& n_dot_v, const T& alpha_g) const {
- const T a = alpha_g * alpha_g;
- const T b = n_dot_v * n_dot_v;
- return T(1) / (n_dot_v + T(sqrt(a + b - a * b)));
- }
- // Generalized-Trowbridge-Reitz (GTR) Microfacet Distribution
- // See paper, Appendix B
- template <typename T>
- inline T GTR1(const T& n_dot_h, const T& a) const {
- T result = T(0);
- if (a >= T(1)) {
- result = T(1 / constants::pi);
- } else {
- const T a2 = a * a;
- const T t = T(1) + (a2 - T(1)) * n_dot_h * n_dot_h;
- result = (a2 - T(1)) / (T(constants::pi) * T(log(a2) * t));
- }
- return result;
- }
- template <typename T>
- inline T GTR2Aniso(const T& n_dot_h,
- const T& h_dot_x,
- const T& h_dot_y,
- const T& ax,
- const T& ay) const {
- return T(1) / (T(constants::pi) * ax * ay *
- Square(Square(h_dot_x / ax) + Square(h_dot_y / ay) +
- n_dot_h * n_dot_h));
- }
- template <typename T>
- inline T Lerp(const T& a, const T& b, const T& u) const {
- return a + u * (b - a);
- }
- template <typename Derived1, typename Derived2>
- inline typename Derived1::PlainObject Lerp(
- const Eigen::MatrixBase<Derived1>& a,
- const Eigen::MatrixBase<Derived2>& b,
- typename Derived1::Scalar alpha) const {
- return (typename Derived1::Scalar(1) - alpha) * a + alpha * b;
- }
- template <typename T>
- inline T Square(const T& x) const {
- return x * x;
- }
- };
- } // namespace ceres
- #endif // CERES_INTERNAL_AUTODIFF_BENCHMARK_BRDF_COST_FUNCTION_H_
|