123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #ifndef CERES_PUBLIC_GRADIENT_PROBLEM_SOLVER_H_
- #define CERES_PUBLIC_GRADIENT_PROBLEM_SOLVER_H_
- #include <cmath>
- #include <string>
- #include <vector>
- #include "ceres/internal/disable_warnings.h"
- #include "ceres/internal/export.h"
- #include "ceres/internal/port.h"
- #include "ceres/iteration_callback.h"
- #include "ceres/types.h"
- namespace ceres {
- class GradientProblem;
- class CERES_EXPORT GradientProblemSolver {
- public:
- virtual ~GradientProblemSolver();
- // The options structure contains, not surprisingly, options that control how
- // the solver operates. The defaults should be suitable for a wide range of
- // problems; however, better performance is often obtainable with tweaking.
- //
- // The constants are defined inside types.h
- struct CERES_EXPORT Options {
- // Returns true if the options struct has a valid
- // configuration. Returns false otherwise, and fills in *error
- // with a message describing the problem.
- bool IsValid(std::string* error) const;
- // Minimizer options ----------------------------------------
- LineSearchDirectionType line_search_direction_type = LBFGS;
- LineSearchType line_search_type = WOLFE;
- NonlinearConjugateGradientType nonlinear_conjugate_gradient_type =
- FLETCHER_REEVES;
- // The LBFGS hessian approximation is a low rank approximation to
- // the inverse of the Hessian matrix. The rank of the
- // approximation determines (linearly) the space and time
- // complexity of using the approximation. Higher the rank, the
- // better is the quality of the approximation. The increase in
- // quality is however is bounded for a number of reasons.
- //
- // 1. The method only uses secant information and not actual
- // derivatives.
- //
- // 2. The Hessian approximation is constrained to be positive
- // definite.
- //
- // So increasing this rank to a large number will cost time and
- // space complexity without the corresponding increase in solution
- // quality. There are no hard and fast rules for choosing the
- // maximum rank. The best choice usually requires some problem
- // specific experimentation.
- //
- // For more theoretical and implementation details of the LBFGS
- // method, please see:
- //
- // Nocedal, J. (1980). "Updating Quasi-Newton Matrices with
- // Limited Storage". Mathematics of Computation 35 (151): 773-782.
- int max_lbfgs_rank = 20;
- // As part of the (L)BFGS update step (BFGS) / right-multiply step (L-BFGS),
- // the initial inverse Hessian approximation is taken to be the Identity.
- // However, Oren showed that using instead I * \gamma, where \gamma is
- // chosen to approximate an eigenvalue of the true inverse Hessian can
- // result in improved convergence in a wide variety of cases. Setting
- // use_approximate_eigenvalue_bfgs_scaling to true enables this scaling.
- //
- // It is important to note that approximate eigenvalue scaling does not
- // always improve convergence, and that it can in fact significantly degrade
- // performance for certain classes of problem, which is why it is disabled
- // by default. In particular it can degrade performance when the
- // sensitivity of the problem to different parameters varies significantly,
- // as in this case a single scalar factor fails to capture this variation
- // and detrimentally downscales parts of the jacobian approximation which
- // correspond to low-sensitivity parameters. It can also reduce the
- // robustness of the solution to errors in the jacobians.
- //
- // Oren S.S., Self-scaling variable metric (SSVM) algorithms
- // Part II: Implementation and experiments, Management Science,
- // 20(5), 863-874, 1974.
- bool use_approximate_eigenvalue_bfgs_scaling = false;
- // Degree of the polynomial used to approximate the objective
- // function. Valid values are BISECTION, QUADRATIC and CUBIC.
- //
- // BISECTION corresponds to pure backtracking search with no
- // interpolation.
- LineSearchInterpolationType line_search_interpolation_type = CUBIC;
- // If during the line search, the step_size falls below this
- // value, it is truncated to zero.
- double min_line_search_step_size = 1e-9;
- // Line search parameters.
- // Solving the line search problem exactly is computationally
- // prohibitive. Fortunately, line search based optimization
- // algorithms can still guarantee convergence if instead of an
- // exact solution, the line search algorithm returns a solution
- // which decreases the value of the objective function
- // sufficiently. More precisely, we are looking for a step_size
- // s.t.
- //
- // f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size
- //
- double line_search_sufficient_function_decrease = 1e-4;
- // In each iteration of the line search,
- //
- // new_step_size >= max_line_search_step_contraction * step_size
- //
- // Note that by definition, for contraction:
- //
- // 0 < max_step_contraction < min_step_contraction < 1
- //
- double max_line_search_step_contraction = 1e-3;
- // In each iteration of the line search,
- //
- // new_step_size <= min_line_search_step_contraction * step_size
- //
- // Note that by definition, for contraction:
- //
- // 0 < max_step_contraction < min_step_contraction < 1
- //
- double min_line_search_step_contraction = 0.6;
- // Maximum number of trial step size iterations during each line search,
- // if a step size satisfying the search conditions cannot be found within
- // this number of trials, the line search will terminate.
- int max_num_line_search_step_size_iterations = 20;
- // Maximum number of restarts of the line search direction algorithm before
- // terminating the optimization. Restarts of the line search direction
- // algorithm occur when the current algorithm fails to produce a new descent
- // direction. This typically indicates a numerical failure, or a breakdown
- // in the validity of the approximations used.
- int max_num_line_search_direction_restarts = 5;
- // The strong Wolfe conditions consist of the Armijo sufficient
- // decrease condition, and an additional requirement that the
- // step-size be chosen s.t. the _magnitude_ ('strong' Wolfe
- // conditions) of the gradient along the search direction
- // decreases sufficiently. Precisely, this second condition
- // is that we seek a step_size s.t.
- //
- // |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)|
- //
- // Where f() is the line search objective and f'() is the derivative
- // of f w.r.t step_size (d f / d step_size).
- double line_search_sufficient_curvature_decrease = 0.9;
- // During the bracketing phase of the Wolfe search, the step size is
- // increased until either a point satisfying the Wolfe conditions is
- // found, or an upper bound for a bracket containing a point satisfying
- // the conditions is found. Precisely, at each iteration of the
- // expansion:
- //
- // new_step_size <= max_step_expansion * step_size.
- //
- // By definition for expansion, max_step_expansion > 1.0.
- double max_line_search_step_expansion = 10.0;
- // Maximum number of iterations for the minimizer to run for.
- int max_num_iterations = 50;
- // Maximum time for which the minimizer should run for.
- double max_solver_time_in_seconds = 1e9;
- // Minimizer terminates when
- //
- // (new_cost - old_cost) < function_tolerance * old_cost;
- //
- double function_tolerance = 1e-6;
- // Minimizer terminates when
- //
- // max_i |x - Project(Plus(x, -g(x))| < gradient_tolerance
- //
- // This value should typically be 1e-4 * function_tolerance.
- double gradient_tolerance = 1e-10;
- // Minimizer terminates when
- //
- // |step|_2 <= parameter_tolerance * ( |x|_2 + parameter_tolerance)
- //
- double parameter_tolerance = 1e-8;
- // Logging options ---------------------------------------------------------
- LoggingType logging_type = PER_MINIMIZER_ITERATION;
- // By default the Minimizer progress is logged to VLOG(1), which
- // is sent to STDERR depending on the vlog level. If this flag is
- // set to true, and logging_type is not SILENT, the logging output
- // is sent to STDOUT.
- bool minimizer_progress_to_stdout = false;
- // If true, the user's parameter blocks are updated at the end of
- // every Minimizer iteration, otherwise they are updated when the
- // Minimizer terminates. This is useful if, for example, the user
- // wishes to visualize the state of the optimization every
- // iteration.
- bool update_state_every_iteration = false;
- // Callbacks that are executed at the end of each iteration of the
- // Minimizer. An iteration may terminate midway, either due to
- // numerical failures or because one of the convergence tests has
- // been satisfied. In this case none of the callbacks are
- // executed.
- // Callbacks are executed in the order that they are specified in
- // this vector. By default, parameter blocks are updated only at
- // the end of the optimization, i.e when the Minimizer
- // terminates. This behaviour is controlled by
- // update_state_every_variable. If the user wishes to have access
- // to the update parameter blocks when his/her callbacks are
- // executed, then set update_state_every_iteration to true.
- //
- // The solver does NOT take ownership of these pointers.
- std::vector<IterationCallback*> callbacks;
- };
- struct CERES_EXPORT Summary {
- // A brief one line description of the state of the solver after
- // termination.
- std::string BriefReport() const;
- // A full multiline description of the state of the solver after
- // termination.
- std::string FullReport() const;
- bool IsSolutionUsable() const;
- // Minimizer summary -------------------------------------------------
- TerminationType termination_type = FAILURE;
- // Reason why the solver terminated.
- std::string message = "ceres::GradientProblemSolve was not called.";
- // Cost of the problem (value of the objective function) before
- // the optimization.
- double initial_cost = -1.0;
- // Cost of the problem (value of the objective function) after the
- // optimization.
- double final_cost = -1.0;
- // IterationSummary for each minimizer iteration in order.
- std::vector<IterationSummary> iterations;
- // Number of times the cost (and not the gradient) was evaluated.
- int num_cost_evaluations = -1;
- // Number of times the gradient (and the cost) were evaluated.
- int num_gradient_evaluations = -1;
- // Sum total of all time spent inside Ceres when Solve is called.
- double total_time_in_seconds = -1.0;
- // Time (in seconds) spent evaluating the cost.
- double cost_evaluation_time_in_seconds = -1.0;
- // Time (in seconds) spent evaluating the gradient.
- double gradient_evaluation_time_in_seconds = -1.0;
- // Time (in seconds) spent minimizing the interpolating polynomial
- // to compute the next candidate step size as part of a line search.
- double line_search_polynomial_minimization_time_in_seconds = -1.0;
- // Number of parameters in the problem.
- int num_parameters = -1;
- // Dimension of the tangent space of the problem.
- int num_tangent_parameters = -1;
- // Type of line search direction used.
- LineSearchDirectionType line_search_direction_type = LBFGS;
- // Type of the line search algorithm used.
- LineSearchType line_search_type = WOLFE;
- // When performing line search, the degree of the polynomial used
- // to approximate the objective function.
- LineSearchInterpolationType line_search_interpolation_type = CUBIC;
- // If the line search direction is NONLINEAR_CONJUGATE_GRADIENT,
- // then this indicates the particular variant of non-linear
- // conjugate gradient used.
- NonlinearConjugateGradientType nonlinear_conjugate_gradient_type =
- FLETCHER_REEVES;
- // If the type of the line search direction is LBFGS, then this
- // indicates the rank of the Hessian approximation.
- int max_lbfgs_rank = -1;
- };
- // Once a least squares problem has been built, this function takes
- // the problem and optimizes it based on the values of the options
- // parameters. Upon return, a detailed summary of the work performed
- // by the preprocessor, the non-linear minimizer and the linear
- // solver are reported in the summary object.
- virtual void Solve(const GradientProblemSolver::Options& options,
- const GradientProblem& problem,
- double* parameters,
- GradientProblemSolver::Summary* summary);
- };
- // Helper function which avoids going through the interface.
- CERES_EXPORT void Solve(const GradientProblemSolver::Options& options,
- const GradientProblem& problem,
- double* parameters,
- GradientProblemSolver::Summary* summary);
- } // namespace ceres
- #include "ceres/internal/reenable_warnings.h"
- #endif // CERES_PUBLIC_GRADIENT_PROBLEM_SOLVER_H_
|