123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2010-2011 Hauke Heibel <heibel@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <unsupported/Eigen/Splines>
- namespace Eigen {
-
- // lets do some explicit instantiations and thus
- // force the compilation of all spline functions...
- template class Spline<double, 2, Dynamic>;
- template class Spline<double, 3, Dynamic>;
- template class Spline<double, 2, 2>;
- template class Spline<double, 2, 3>;
- template class Spline<double, 2, 4>;
- template class Spline<double, 2, 5>;
- template class Spline<float, 2, Dynamic>;
- template class Spline<float, 3, Dynamic>;
- template class Spline<float, 3, 2>;
- template class Spline<float, 3, 3>;
- template class Spline<float, 3, 4>;
- template class Spline<float, 3, 5>;
- }
- Spline<double, 2, Dynamic> closed_spline2d()
- {
- RowVectorXd knots(12);
- knots << 0,
- 0,
- 0,
- 0,
- 0.867193179093898,
- 1.660330955342408,
- 2.605084834823134,
- 3.484154586374428,
- 4.252699478956276,
- 4.252699478956276,
- 4.252699478956276,
- 4.252699478956276;
- MatrixXd ctrls(8,2);
- ctrls << -0.370967741935484, 0.236842105263158,
- -0.231401860693277, 0.442245185027632,
- 0.344361228532831, 0.773369994120753,
- 0.828990216203802, 0.106550882647595,
- 0.407270163678382, -1.043452922172848,
- -0.488467813584053, -0.390098582530090,
- -0.494657189446427, 0.054804824897884,
- -0.370967741935484, 0.236842105263158;
- ctrls.transposeInPlace();
- return Spline<double, 2, Dynamic>(knots, ctrls);
- }
- /* create a reference spline */
- Spline<double, 3, Dynamic> spline3d()
- {
- RowVectorXd knots(11);
- knots << 0,
- 0,
- 0,
- 0.118997681558377,
- 0.162611735194631,
- 0.498364051982143,
- 0.655098003973841,
- 0.679702676853675,
- 1.000000000000000,
- 1.000000000000000,
- 1.000000000000000;
- MatrixXd ctrls(8,3);
- ctrls << 0.959743958516081, 0.340385726666133, 0.585267750979777,
- 0.223811939491137, 0.751267059305653, 0.255095115459269,
- 0.505957051665142, 0.699076722656686, 0.890903252535799,
- 0.959291425205444, 0.547215529963803, 0.138624442828679,
- 0.149294005559057, 0.257508254123736, 0.840717255983663,
- 0.254282178971531, 0.814284826068816, 0.243524968724989,
- 0.929263623187228, 0.349983765984809, 0.196595250431208,
- 0.251083857976031, 0.616044676146639, 0.473288848902729;
- ctrls.transposeInPlace();
- return Spline<double, 3, Dynamic>(knots, ctrls);
- }
- /* compares evaluations against known results */
- void eval_spline3d()
- {
- Spline3d spline = spline3d();
- RowVectorXd u(10);
- u << 0.351659507062997,
- 0.830828627896291,
- 0.585264091152724,
- 0.549723608291140,
- 0.917193663829810,
- 0.285839018820374,
- 0.757200229110721,
- 0.753729094278495,
- 0.380445846975357,
- 0.567821640725221;
- MatrixXd pts(10,3);
- pts << 0.707620811535916, 0.510258911240815, 0.417485437023409,
- 0.603422256426978, 0.529498282727551, 0.270351549348981,
- 0.228364197569334, 0.423745615677815, 0.637687289287490,
- 0.275556796335168, 0.350856706427970, 0.684295784598905,
- 0.514519311047655, 0.525077224890754, 0.351628308305896,
- 0.724152914315666, 0.574461155457304, 0.469860285484058,
- 0.529365063753288, 0.613328702656816, 0.237837040141739,
- 0.522469395136878, 0.619099658652895, 0.237139665242069,
- 0.677357023849552, 0.480655768435853, 0.422227610314397,
- 0.247046593173758, 0.380604672404750, 0.670065791405019;
- pts.transposeInPlace();
- for (int i=0; i<u.size(); ++i)
- {
- Vector3d pt = spline(u(i));
- VERIFY( (pt - pts.col(i)).norm() < 1e-14 );
- }
- }
- /* compares evaluations on corner cases */
- void eval_spline3d_onbrks()
- {
- Spline3d spline = spline3d();
- RowVectorXd u = spline.knots();
- MatrixXd pts(11,3);
- pts << 0.959743958516081, 0.340385726666133, 0.585267750979777,
- 0.959743958516081, 0.340385726666133, 0.585267750979777,
- 0.959743958516081, 0.340385726666133, 0.585267750979777,
- 0.430282980289940, 0.713074680056118, 0.720373307943349,
- 0.558074875553060, 0.681617921034459, 0.804417124839942,
- 0.407076008291750, 0.349707710518163, 0.617275937419545,
- 0.240037008286602, 0.738739390398014, 0.324554153129411,
- 0.302434111480572, 0.781162443963899, 0.240177089094644,
- 0.251083857976031, 0.616044676146639, 0.473288848902729,
- 0.251083857976031, 0.616044676146639, 0.473288848902729,
- 0.251083857976031, 0.616044676146639, 0.473288848902729;
- pts.transposeInPlace();
- for (int i=0; i<u.size(); ++i)
- {
- Vector3d pt = spline(u(i));
- VERIFY( (pt - pts.col(i)).norm() < 1e-14 );
- }
- }
- void eval_closed_spline2d()
- {
- Spline2d spline = closed_spline2d();
- RowVectorXd u(12);
- u << 0,
- 0.332457030395796,
- 0.356467130532952,
- 0.453562180176215,
- 0.648017921874804,
- 0.973770235555003,
- 1.882577647219307,
- 2.289408593930498,
- 3.511951429883045,
- 3.884149321369450,
- 4.236261590369414,
- 4.252699478956276;
- MatrixXd pts(12,2);
- pts << -0.370967741935484, 0.236842105263158,
- -0.152576775123250, 0.448975001279334,
- -0.133417538277668, 0.461615613865667,
- -0.053199060826740, 0.507630360006299,
- 0.114249591147281, 0.570414135097409,
- 0.377810316891987, 0.560497102875315,
- 0.665052120135908, -0.157557441109611,
- 0.516006487053228, -0.559763292174825,
- -0.379486035348887, -0.331959640488223,
- -0.462034726249078, -0.039105670080824,
- -0.378730600917982, 0.225127015099919,
- -0.370967741935484, 0.236842105263158;
- pts.transposeInPlace();
- for (int i=0; i<u.size(); ++i)
- {
- Vector2d pt = spline(u(i));
- VERIFY( (pt - pts.col(i)).norm() < 1e-14 );
- }
- }
- void check_global_interpolation2d()
- {
- typedef Spline2d::PointType PointType;
- typedef Spline2d::KnotVectorType KnotVectorType;
- typedef Spline2d::ControlPointVectorType ControlPointVectorType;
- ControlPointVectorType points = ControlPointVectorType::Random(2,100);
- KnotVectorType chord_lengths; // knot parameters
- Eigen::ChordLengths(points, chord_lengths);
- // interpolation without knot parameters
- {
- const Spline2d spline = SplineFitting<Spline2d>::Interpolate(points,3);
- for (Eigen::DenseIndex i=0; i<points.cols(); ++i)
- {
- PointType pt = spline( chord_lengths(i) );
- PointType ref = points.col(i);
- VERIFY( (pt - ref).matrix().norm() < 1e-14 );
- }
- }
- // interpolation with given knot parameters
- {
- const Spline2d spline = SplineFitting<Spline2d>::Interpolate(points,3,chord_lengths);
- for (Eigen::DenseIndex i=0; i<points.cols(); ++i)
- {
- PointType pt = spline( chord_lengths(i) );
- PointType ref = points.col(i);
- VERIFY( (pt - ref).matrix().norm() < 1e-14 );
- }
- }
- }
- void check_global_interpolation_with_derivatives2d()
- {
- typedef Spline2d::PointType PointType;
- typedef Spline2d::KnotVectorType KnotVectorType;
- const Eigen::DenseIndex numPoints = 100;
- const unsigned int dimension = 2;
- const unsigned int degree = 3;
- ArrayXXd points = ArrayXXd::Random(dimension, numPoints);
- KnotVectorType knots;
- Eigen::ChordLengths(points, knots);
- ArrayXXd derivatives = ArrayXXd::Random(dimension, numPoints);
- VectorXd derivativeIndices(numPoints);
- for (Eigen::DenseIndex i = 0; i < numPoints; ++i)
- derivativeIndices(i) = static_cast<double>(i);
- const Spline2d spline = SplineFitting<Spline2d>::InterpolateWithDerivatives(
- points, derivatives, derivativeIndices, degree);
-
- for (Eigen::DenseIndex i = 0; i < points.cols(); ++i)
- {
- PointType point = spline(knots(i));
- PointType referencePoint = points.col(i);
- VERIFY_IS_APPROX(point, referencePoint);
- PointType derivative = spline.derivatives(knots(i), 1).col(1);
- PointType referenceDerivative = derivatives.col(i);
- VERIFY_IS_APPROX(derivative, referenceDerivative);
- }
- }
- EIGEN_DECLARE_TEST(splines)
- {
- for (int i = 0; i < g_repeat; ++i)
- {
- CALL_SUBTEST( eval_spline3d() );
- CALL_SUBTEST( eval_spline3d_onbrks() );
- CALL_SUBTEST( eval_closed_spline2d() );
- CALL_SUBTEST( check_global_interpolation2d() );
- CALL_SUBTEST( check_global_interpolation_with_derivatives2d() );
- }
- }
|