123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <Eigen/Dense>
- #define NUMBER_DIRECTIONS 16
- #include <unsupported/Eigen/AdolcForward>
- template<typename Vector>
- EIGEN_DONT_INLINE typename Vector::Scalar foo(const Vector& p)
- {
- typedef typename Vector::Scalar Scalar;
- return (p-Vector(Scalar(-1),Scalar(1.))).norm() + (p.array().sqrt().abs() * p.array().sin()).sum() + p.dot(p);
- }
- template<typename _Scalar, int NX=Dynamic, int NY=Dynamic>
- struct TestFunc1
- {
- typedef _Scalar Scalar;
- enum {
- InputsAtCompileTime = NX,
- ValuesAtCompileTime = NY
- };
- typedef Matrix<Scalar,InputsAtCompileTime,1> InputType;
- typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
- typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
- int m_inputs, m_values;
- TestFunc1() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
- TestFunc1(int inputs_, int values_) : m_inputs(inputs_), m_values(values_) {}
- int inputs() const { return m_inputs; }
- int values() const { return m_values; }
- template<typename T>
- void operator() (const Matrix<T,InputsAtCompileTime,1>& x, Matrix<T,ValuesAtCompileTime,1>* _v) const
- {
- Matrix<T,ValuesAtCompileTime,1>& v = *_v;
- v[0] = 2 * x[0] * x[0] + x[0] * x[1];
- v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1];
- if(inputs()>2)
- {
- v[0] += 0.5 * x[2];
- v[1] += x[2];
- }
- if(values()>2)
- {
- v[2] = 3 * x[1] * x[0] * x[0];
- }
- if (inputs()>2 && values()>2)
- v[2] *= x[2];
- }
- void operator() (const InputType& x, ValueType* v, JacobianType* _j) const
- {
- (*this)(x, v);
- if(_j)
- {
- JacobianType& j = *_j;
- j(0,0) = 4 * x[0] + x[1];
- j(1,0) = 3 * x[1];
- j(0,1) = x[0];
- j(1,1) = 3 * x[0] + 2 * 0.5 * x[1];
- if (inputs()>2)
- {
- j(0,2) = 0.5;
- j(1,2) = 1;
- }
- if(values()>2)
- {
- j(2,0) = 3 * x[1] * 2 * x[0];
- j(2,1) = 3 * x[0] * x[0];
- }
- if (inputs()>2 && values()>2)
- {
- j(2,0) *= x[2];
- j(2,1) *= x[2];
- j(2,2) = 3 * x[1] * x[0] * x[0];
- j(2,2) = 3 * x[1] * x[0] * x[0];
- }
- }
- }
- };
- template<typename Func> void adolc_forward_jacobian(const Func& f)
- {
- typename Func::InputType x = Func::InputType::Random(f.inputs());
- typename Func::ValueType y(f.values()), yref(f.values());
- typename Func::JacobianType j(f.values(),f.inputs()), jref(f.values(),f.inputs());
- jref.setZero();
- yref.setZero();
- f(x,&yref,&jref);
- // std::cerr << y.transpose() << "\n\n";;
- // std::cerr << j << "\n\n";;
- j.setZero();
- y.setZero();
- AdolcForwardJacobian<Func> autoj(f);
- autoj(x, &y, &j);
- // std::cerr << y.transpose() << "\n\n";;
- // std::cerr << j << "\n\n";;
- VERIFY_IS_APPROX(y, yref);
- VERIFY_IS_APPROX(j, jref);
- }
- EIGEN_DECLARE_TEST(forward_adolc)
- {
- adtl::setNumDir(NUMBER_DIRECTIONS);
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST(( adolc_forward_jacobian(TestFunc1<double,2,2>()) ));
- CALL_SUBTEST(( adolc_forward_jacobian(TestFunc1<double,2,3>()) ));
- CALL_SUBTEST(( adolc_forward_jacobian(TestFunc1<double,3,2>()) ));
- CALL_SUBTEST(( adolc_forward_jacobian(TestFunc1<double,3,3>()) ));
- CALL_SUBTEST(( adolc_forward_jacobian(TestFunc1<double>(3,3)) ));
- }
- {
- // simple instantiation tests
- Matrix<adtl::adouble,2,1> x;
- foo(x);
- Matrix<adtl::adouble,Dynamic,Dynamic> A(4,4);;
- A.selfadjointView<Lower>().eigenvalues();
- }
- }
|