cxx11_tensor_ref.cpp 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248
  1. // This file is part of Eigen, a lightweight C++ template library
  2. // for linear algebra.
  3. //
  4. // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
  5. //
  6. // This Source Code Form is subject to the terms of the Mozilla
  7. // Public License v. 2.0. If a copy of the MPL was not distributed
  8. // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
  9. #include "main.h"
  10. #include <Eigen/CXX11/Tensor>
  11. using Eigen::Tensor;
  12. using Eigen::RowMajor;
  13. static void test_simple_lvalue_ref()
  14. {
  15. Tensor<int, 1> input(6);
  16. input.setRandom();
  17. TensorRef<Tensor<int, 1>> ref3(input);
  18. TensorRef<Tensor<int, 1>> ref4 = input;
  19. VERIFY_IS_EQUAL(ref3.data(), input.data());
  20. VERIFY_IS_EQUAL(ref4.data(), input.data());
  21. for (int i = 0; i < 6; ++i) {
  22. VERIFY_IS_EQUAL(ref3(i), input(i));
  23. VERIFY_IS_EQUAL(ref4(i), input(i));
  24. }
  25. for (int i = 0; i < 6; ++i) {
  26. ref3.coeffRef(i) = i;
  27. }
  28. for (int i = 0; i < 6; ++i) {
  29. VERIFY_IS_EQUAL(input(i), i);
  30. }
  31. for (int i = 0; i < 6; ++i) {
  32. ref4.coeffRef(i) = -i * 2;
  33. }
  34. for (int i = 0; i < 6; ++i) {
  35. VERIFY_IS_EQUAL(input(i), -i*2);
  36. }
  37. }
  38. static void test_simple_rvalue_ref()
  39. {
  40. Tensor<int, 1> input1(6);
  41. input1.setRandom();
  42. Tensor<int, 1> input2(6);
  43. input2.setRandom();
  44. TensorRef<Tensor<int, 1>> ref3(input1 + input2);
  45. TensorRef<Tensor<int, 1>> ref4 = input1 + input2;
  46. VERIFY_IS_NOT_EQUAL(ref3.data(), input1.data());
  47. VERIFY_IS_NOT_EQUAL(ref4.data(), input1.data());
  48. VERIFY_IS_NOT_EQUAL(ref3.data(), input2.data());
  49. VERIFY_IS_NOT_EQUAL(ref4.data(), input2.data());
  50. for (int i = 0; i < 6; ++i) {
  51. VERIFY_IS_EQUAL(ref3(i), input1(i) + input2(i));
  52. VERIFY_IS_EQUAL(ref4(i), input1(i) + input2(i));
  53. }
  54. }
  55. static void test_multiple_dims()
  56. {
  57. Tensor<float, 3> input(3,5,7);
  58. input.setRandom();
  59. TensorRef<Tensor<float, 3>> ref(input);
  60. VERIFY_IS_EQUAL(ref.data(), input.data());
  61. VERIFY_IS_EQUAL(ref.dimension(0), 3);
  62. VERIFY_IS_EQUAL(ref.dimension(1), 5);
  63. VERIFY_IS_EQUAL(ref.dimension(2), 7);
  64. for (int i = 0; i < 3; ++i) {
  65. for (int j = 0; j < 5; ++j) {
  66. for (int k = 0; k < 7; ++k) {
  67. VERIFY_IS_EQUAL(ref(i,j,k), input(i,j,k));
  68. }
  69. }
  70. }
  71. }
  72. static void test_slice()
  73. {
  74. Tensor<float, 5> tensor(2,3,5,7,11);
  75. tensor.setRandom();
  76. Eigen::DSizes<ptrdiff_t, 5> indices(1,2,3,4,5);
  77. Eigen::DSizes<ptrdiff_t, 5> sizes(1,1,1,1,1);
  78. TensorRef<Tensor<float, 5>> slice = tensor.slice(indices, sizes);
  79. VERIFY_IS_EQUAL(slice(0,0,0,0,0), tensor(1,2,3,4,5));
  80. Eigen::DSizes<ptrdiff_t, 5> indices2(1,1,3,4,5);
  81. Eigen::DSizes<ptrdiff_t, 5> sizes2(1,1,2,2,3);
  82. slice = tensor.slice(indices2, sizes2);
  83. for (int i = 0; i < 2; ++i) {
  84. for (int j = 0; j < 2; ++j) {
  85. for (int k = 0; k < 3; ++k) {
  86. VERIFY_IS_EQUAL(slice(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
  87. }
  88. }
  89. }
  90. Eigen::DSizes<ptrdiff_t, 5> indices3(0,0,0,0,0);
  91. Eigen::DSizes<ptrdiff_t, 5> sizes3(2,3,1,1,1);
  92. slice = tensor.slice(indices3, sizes3);
  93. VERIFY_IS_EQUAL(slice.data(), tensor.data());
  94. }
  95. static void test_ref_of_ref()
  96. {
  97. Tensor<float, 3> input(3,5,7);
  98. input.setRandom();
  99. TensorRef<Tensor<float, 3>> ref(input);
  100. TensorRef<Tensor<float, 3>> ref_of_ref(ref);
  101. TensorRef<Tensor<float, 3>> ref_of_ref2;
  102. ref_of_ref2 = ref;
  103. VERIFY_IS_EQUAL(ref_of_ref.data(), input.data());
  104. VERIFY_IS_EQUAL(ref_of_ref.dimension(0), 3);
  105. VERIFY_IS_EQUAL(ref_of_ref.dimension(1), 5);
  106. VERIFY_IS_EQUAL(ref_of_ref.dimension(2), 7);
  107. VERIFY_IS_EQUAL(ref_of_ref2.data(), input.data());
  108. VERIFY_IS_EQUAL(ref_of_ref2.dimension(0), 3);
  109. VERIFY_IS_EQUAL(ref_of_ref2.dimension(1), 5);
  110. VERIFY_IS_EQUAL(ref_of_ref2.dimension(2), 7);
  111. for (int i = 0; i < 3; ++i) {
  112. for (int j = 0; j < 5; ++j) {
  113. for (int k = 0; k < 7; ++k) {
  114. VERIFY_IS_EQUAL(ref_of_ref(i,j,k), input(i,j,k));
  115. VERIFY_IS_EQUAL(ref_of_ref2(i,j,k), input(i,j,k));
  116. }
  117. }
  118. }
  119. }
  120. static void test_ref_in_expr()
  121. {
  122. Tensor<float, 3> input(3,5,7);
  123. input.setRandom();
  124. TensorRef<Tensor<float, 3>> input_ref(input);
  125. Tensor<float, 3> result(3,5,7);
  126. result.setRandom();
  127. TensorRef<Tensor<float, 3>> result_ref(result);
  128. Tensor<float, 3> bias(3,5,7);
  129. bias.setRandom();
  130. result_ref = input_ref + bias;
  131. for (int i = 0; i < 3; ++i) {
  132. for (int j = 0; j < 5; ++j) {
  133. for (int k = 0; k < 7; ++k) {
  134. VERIFY_IS_EQUAL(result_ref(i,j,k), input(i,j,k) + bias(i,j,k));
  135. VERIFY_IS_NOT_EQUAL(result(i,j,k), input(i,j,k) + bias(i,j,k));
  136. }
  137. }
  138. }
  139. result = result_ref;
  140. for (int i = 0; i < 3; ++i) {
  141. for (int j = 0; j < 5; ++j) {
  142. for (int k = 0; k < 7; ++k) {
  143. VERIFY_IS_EQUAL(result(i,j,k), input(i,j,k) + bias(i,j,k));
  144. }
  145. }
  146. }
  147. }
  148. static void test_coeff_ref()
  149. {
  150. Tensor<float, 5> tensor(2,3,5,7,11);
  151. tensor.setRandom();
  152. Tensor<float, 5> original = tensor;
  153. TensorRef<Tensor<float, 4>> slice = tensor.chip(7, 4);
  154. slice.coeffRef(0, 0, 0, 0) = 1.0f;
  155. slice.coeffRef(1, 0, 0, 0) += 2.0f;
  156. VERIFY_IS_EQUAL(tensor(0,0,0,0,7), 1.0f);
  157. VERIFY_IS_EQUAL(tensor(1,0,0,0,7), original(1,0,0,0,7) + 2.0f);
  158. }
  159. static void test_nested_ops_with_ref()
  160. {
  161. Tensor<float, 4> t(2, 3, 5, 7);
  162. t.setRandom();
  163. TensorMap<Tensor<const float, 4> > m(t.data(), 2, 3, 5, 7);
  164. array<std::pair<ptrdiff_t, ptrdiff_t>, 4> paddings;
  165. paddings[0] = std::make_pair(0, 0);
  166. paddings[1] = std::make_pair(2, 1);
  167. paddings[2] = std::make_pair(3, 4);
  168. paddings[3] = std::make_pair(0, 0);
  169. DSizes<Eigen::DenseIndex, 4> shuffle_dims(0, 1, 2, 3);
  170. TensorRef<Tensor<const float, 4> > ref(m.pad(paddings));
  171. array<std::pair<ptrdiff_t, ptrdiff_t>, 4> trivial;
  172. trivial[0] = std::make_pair(0, 0);
  173. trivial[1] = std::make_pair(0, 0);
  174. trivial[2] = std::make_pair(0, 0);
  175. trivial[3] = std::make_pair(0, 0);
  176. Tensor<float, 4> padded = ref.shuffle(shuffle_dims).pad(trivial);
  177. VERIFY_IS_EQUAL(padded.dimension(0), 2+0);
  178. VERIFY_IS_EQUAL(padded.dimension(1), 3+3);
  179. VERIFY_IS_EQUAL(padded.dimension(2), 5+7);
  180. VERIFY_IS_EQUAL(padded.dimension(3), 7+0);
  181. for (int i = 0; i < 2; ++i) {
  182. for (int j = 0; j < 6; ++j) {
  183. for (int k = 0; k < 12; ++k) {
  184. for (int l = 0; l < 7; ++l) {
  185. if (j >= 2 && j < 5 && k >= 3 && k < 8) {
  186. VERIFY_IS_EQUAL(padded(i,j,k,l), t(i,j-2,k-3,l));
  187. } else {
  188. VERIFY_IS_EQUAL(padded(i,j,k,l), 0.0f);
  189. }
  190. }
  191. }
  192. }
  193. }
  194. }
  195. EIGEN_DECLARE_TEST(cxx11_tensor_ref)
  196. {
  197. CALL_SUBTEST(test_simple_lvalue_ref());
  198. CALL_SUBTEST(test_simple_rvalue_ref());
  199. CALL_SUBTEST(test_multiple_dims());
  200. CALL_SUBTEST(test_slice());
  201. CALL_SUBTEST(test_ref_of_ref());
  202. CALL_SUBTEST(test_ref_in_expr());
  203. CALL_SUBTEST(test_coeff_ref());
  204. CALL_SUBTEST(test_nested_ops_with_ref());
  205. }