cxx11_tensor_ifft.cpp 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154
  1. // This file is part of Eigen, a lightweight C++ template library
  2. // for linear algebra.
  3. //
  4. // Copyright (C) 2014 Jianwei Cui <thucjw@gmail.com>
  5. //
  6. // This Source Code Form is subject to the terms of the Mozilla
  7. // Public License v. 2.0. If a copy of the MPL was not distributed
  8. // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
  9. #include "main.h"
  10. #include <complex>
  11. #include <cmath>
  12. #include <Eigen/CXX11/Tensor>
  13. using Eigen::Tensor;
  14. template <int DataLayout>
  15. static void test_1D_fft_ifft_invariant(int sequence_length) {
  16. Tensor<double, 1, DataLayout> tensor(sequence_length);
  17. tensor.setRandom();
  18. array<int, 1> fft;
  19. fft[0] = 0;
  20. Tensor<std::complex<double>, 1, DataLayout> tensor_after_fft;
  21. Tensor<std::complex<double>, 1, DataLayout> tensor_after_fft_ifft;
  22. tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
  23. tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft);
  24. VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), sequence_length);
  25. VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), sequence_length);
  26. for (int i = 0; i < sequence_length; ++i) {
  27. VERIFY_IS_APPROX(static_cast<float>(tensor(i)), static_cast<float>(std::real(tensor_after_fft_ifft(i))));
  28. }
  29. }
  30. template <int DataLayout>
  31. static void test_2D_fft_ifft_invariant(int dim0, int dim1) {
  32. Tensor<double, 2, DataLayout> tensor(dim0, dim1);
  33. tensor.setRandom();
  34. array<int, 2> fft;
  35. fft[0] = 0;
  36. fft[1] = 1;
  37. Tensor<std::complex<double>, 2, DataLayout> tensor_after_fft;
  38. Tensor<std::complex<double>, 2, DataLayout> tensor_after_fft_ifft;
  39. tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
  40. tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft);
  41. VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0);
  42. VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1);
  43. VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0);
  44. VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1);
  45. for (int i = 0; i < dim0; ++i) {
  46. for (int j = 0; j < dim1; ++j) {
  47. //std::cout << "[" << i << "][" << j << "]" << " Original data: " << tensor(i,j) << " Transformed data:" << tensor_after_fft_ifft(i,j) << std::endl;
  48. VERIFY_IS_APPROX(static_cast<float>(tensor(i,j)), static_cast<float>(std::real(tensor_after_fft_ifft(i,j))));
  49. }
  50. }
  51. }
  52. template <int DataLayout>
  53. static void test_3D_fft_ifft_invariant(int dim0, int dim1, int dim2) {
  54. Tensor<double, 3, DataLayout> tensor(dim0, dim1, dim2);
  55. tensor.setRandom();
  56. array<int, 3> fft;
  57. fft[0] = 0;
  58. fft[1] = 1;
  59. fft[2] = 2;
  60. Tensor<std::complex<double>, 3, DataLayout> tensor_after_fft;
  61. Tensor<std::complex<double>, 3, DataLayout> tensor_after_fft_ifft;
  62. tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
  63. tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft);
  64. VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0);
  65. VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1);
  66. VERIFY_IS_EQUAL(tensor_after_fft.dimension(2), dim2);
  67. VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0);
  68. VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1);
  69. VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(2), dim2);
  70. for (int i = 0; i < dim0; ++i) {
  71. for (int j = 0; j < dim1; ++j) {
  72. for (int k = 0; k < dim2; ++k) {
  73. VERIFY_IS_APPROX(static_cast<float>(tensor(i,j,k)), static_cast<float>(std::real(tensor_after_fft_ifft(i,j,k))));
  74. }
  75. }
  76. }
  77. }
  78. template <int DataLayout>
  79. static void test_sub_fft_ifft_invariant(int dim0, int dim1, int dim2, int dim3) {
  80. Tensor<double, 4, DataLayout> tensor(dim0, dim1, dim2, dim3);
  81. tensor.setRandom();
  82. array<int, 2> fft;
  83. fft[0] = 2;
  84. fft[1] = 0;
  85. Tensor<std::complex<double>, 4, DataLayout> tensor_after_fft;
  86. Tensor<double, 4, DataLayout> tensor_after_fft_ifft;
  87. tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
  88. tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::RealPart, Eigen::FFT_REVERSE>(fft);
  89. VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0);
  90. VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1);
  91. VERIFY_IS_EQUAL(tensor_after_fft.dimension(2), dim2);
  92. VERIFY_IS_EQUAL(tensor_after_fft.dimension(3), dim3);
  93. VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0);
  94. VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1);
  95. VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(2), dim2);
  96. VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(3), dim3);
  97. for (int i = 0; i < dim0; ++i) {
  98. for (int j = 0; j < dim1; ++j) {
  99. for (int k = 0; k < dim2; ++k) {
  100. for (int l = 0; l < dim3; ++l) {
  101. VERIFY_IS_APPROX(static_cast<float>(tensor(i,j,k,l)), static_cast<float>(tensor_after_fft_ifft(i,j,k,l)));
  102. }
  103. }
  104. }
  105. }
  106. }
  107. EIGEN_DECLARE_TEST(cxx11_tensor_ifft) {
  108. CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(4));
  109. CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(16));
  110. CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(32));
  111. CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(1024*1024));
  112. CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(4,4));
  113. CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(8,16));
  114. CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(16,32));
  115. CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(1024,1024));
  116. CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(4,4,4));
  117. CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(8,16,32));
  118. CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(16,4,8));
  119. CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(256,256,256));
  120. CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(4,4,4,4));
  121. CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(8,16,32,64));
  122. CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(16,4,8,12));
  123. CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(64,64,64,64));
  124. }