123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2014 Jianwei Cui <thucjw@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <complex>
- #include <cmath>
- #include <Eigen/CXX11/Tensor>
- using Eigen::Tensor;
- template <int DataLayout>
- static void test_1D_fft_ifft_invariant(int sequence_length) {
- Tensor<double, 1, DataLayout> tensor(sequence_length);
- tensor.setRandom();
- array<int, 1> fft;
- fft[0] = 0;
- Tensor<std::complex<double>, 1, DataLayout> tensor_after_fft;
- Tensor<std::complex<double>, 1, DataLayout> tensor_after_fft_ifft;
- tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
- tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft);
- VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), sequence_length);
- VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), sequence_length);
- for (int i = 0; i < sequence_length; ++i) {
- VERIFY_IS_APPROX(static_cast<float>(tensor(i)), static_cast<float>(std::real(tensor_after_fft_ifft(i))));
- }
- }
- template <int DataLayout>
- static void test_2D_fft_ifft_invariant(int dim0, int dim1) {
- Tensor<double, 2, DataLayout> tensor(dim0, dim1);
- tensor.setRandom();
- array<int, 2> fft;
- fft[0] = 0;
- fft[1] = 1;
- Tensor<std::complex<double>, 2, DataLayout> tensor_after_fft;
- Tensor<std::complex<double>, 2, DataLayout> tensor_after_fft_ifft;
- tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
- tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft);
- VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0);
- VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1);
- VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0);
- VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1);
- for (int i = 0; i < dim0; ++i) {
- for (int j = 0; j < dim1; ++j) {
- //std::cout << "[" << i << "][" << j << "]" << " Original data: " << tensor(i,j) << " Transformed data:" << tensor_after_fft_ifft(i,j) << std::endl;
- VERIFY_IS_APPROX(static_cast<float>(tensor(i,j)), static_cast<float>(std::real(tensor_after_fft_ifft(i,j))));
- }
- }
- }
- template <int DataLayout>
- static void test_3D_fft_ifft_invariant(int dim0, int dim1, int dim2) {
- Tensor<double, 3, DataLayout> tensor(dim0, dim1, dim2);
- tensor.setRandom();
- array<int, 3> fft;
- fft[0] = 0;
- fft[1] = 1;
- fft[2] = 2;
- Tensor<std::complex<double>, 3, DataLayout> tensor_after_fft;
- Tensor<std::complex<double>, 3, DataLayout> tensor_after_fft_ifft;
- tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
- tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft);
- VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0);
- VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1);
- VERIFY_IS_EQUAL(tensor_after_fft.dimension(2), dim2);
- VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0);
- VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1);
- VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(2), dim2);
- for (int i = 0; i < dim0; ++i) {
- for (int j = 0; j < dim1; ++j) {
- for (int k = 0; k < dim2; ++k) {
- VERIFY_IS_APPROX(static_cast<float>(tensor(i,j,k)), static_cast<float>(std::real(tensor_after_fft_ifft(i,j,k))));
- }
- }
- }
- }
- template <int DataLayout>
- static void test_sub_fft_ifft_invariant(int dim0, int dim1, int dim2, int dim3) {
- Tensor<double, 4, DataLayout> tensor(dim0, dim1, dim2, dim3);
- tensor.setRandom();
- array<int, 2> fft;
- fft[0] = 2;
- fft[1] = 0;
- Tensor<std::complex<double>, 4, DataLayout> tensor_after_fft;
- Tensor<double, 4, DataLayout> tensor_after_fft_ifft;
- tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
- tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::RealPart, Eigen::FFT_REVERSE>(fft);
- VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0);
- VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1);
- VERIFY_IS_EQUAL(tensor_after_fft.dimension(2), dim2);
- VERIFY_IS_EQUAL(tensor_after_fft.dimension(3), dim3);
- VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0);
- VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1);
- VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(2), dim2);
- VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(3), dim3);
- for (int i = 0; i < dim0; ++i) {
- for (int j = 0; j < dim1; ++j) {
- for (int k = 0; k < dim2; ++k) {
- for (int l = 0; l < dim3; ++l) {
- VERIFY_IS_APPROX(static_cast<float>(tensor(i,j,k,l)), static_cast<float>(tensor_after_fft_ifft(i,j,k,l)));
- }
- }
- }
- }
- }
- EIGEN_DECLARE_TEST(cxx11_tensor_ifft) {
- CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(4));
- CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(16));
- CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(32));
- CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(1024*1024));
- CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(4,4));
- CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(8,16));
- CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(16,32));
- CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(1024,1024));
- CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(4,4,4));
- CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(8,16,32));
- CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(16,4,8));
- CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(256,256,256));
- CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(4,4,4,4));
- CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(8,16,32,64));
- CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(16,4,8,12));
- CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(64,64,64,64));
- }
|