123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #define EIGEN_TEST_NO_LONGDOUBLE
- #define EIGEN_TEST_NO_COMPLEX
- #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
- #define EIGEN_USE_GPU
- #include "main.h"
- #include <unsupported/Eigen/CXX11/Tensor>
- #include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h>
- using Eigen::Tensor;
- using Eigen::RowMajor;
- // Context for evaluation on cpu
- struct CPUContext {
- CPUContext(const Eigen::Tensor<float, 3>& in1, Eigen::Tensor<float, 3>& in2, Eigen::Tensor<float, 3>& out) : in1_(in1), in2_(in2), out_(out), kernel_1d_(2), kernel_2d_(2,2), kernel_3d_(2,2,2) {
- kernel_1d_(0) = 3.14f;
- kernel_1d_(1) = 2.7f;
- kernel_2d_(0,0) = 3.14f;
- kernel_2d_(1,0) = 2.7f;
- kernel_2d_(0,1) = 0.2f;
- kernel_2d_(1,1) = 7.0f;
- kernel_3d_(0,0,0) = 3.14f;
- kernel_3d_(0,1,0) = 2.7f;
- kernel_3d_(0,0,1) = 0.2f;
- kernel_3d_(0,1,1) = 7.0f;
- kernel_3d_(1,0,0) = -1.0f;
- kernel_3d_(1,1,0) = -0.3f;
- kernel_3d_(1,0,1) = -0.7f;
- kernel_3d_(1,1,1) = -0.5f;
- }
- const Eigen::DefaultDevice& device() const { return cpu_device_; }
- const Eigen::Tensor<float, 3>& in1() const { return in1_; }
- const Eigen::Tensor<float, 3>& in2() const { return in2_; }
- Eigen::Tensor<float, 3>& out() { return out_; }
- const Eigen::Tensor<float, 1>& kernel1d() const { return kernel_1d_; }
- const Eigen::Tensor<float, 2>& kernel2d() const { return kernel_2d_; }
- const Eigen::Tensor<float, 3>& kernel3d() const { return kernel_3d_; }
- private:
- const Eigen::Tensor<float, 3>& in1_;
- const Eigen::Tensor<float, 3>& in2_;
- Eigen::Tensor<float, 3>& out_;
- Eigen::Tensor<float, 1> kernel_1d_;
- Eigen::Tensor<float, 2> kernel_2d_;
- Eigen::Tensor<float, 3> kernel_3d_;
- Eigen::DefaultDevice cpu_device_;
- };
- // Context for evaluation on GPU
- struct GPUContext {
- GPUContext(const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in1, Eigen::TensorMap<Eigen::Tensor<float, 3> >& in2, Eigen::TensorMap<Eigen::Tensor<float, 3> >& out) : in1_(in1), in2_(in2), out_(out), gpu_device_(&stream_) {
- assert(gpuMalloc((void**)(&kernel_1d_), 2*sizeof(float)) == gpuSuccess);
- float kernel_1d_val[] = {3.14f, 2.7f};
- assert(gpuMemcpy(kernel_1d_, kernel_1d_val, 2*sizeof(float), gpuMemcpyHostToDevice) == gpuSuccess);
- assert(gpuMalloc((void**)(&kernel_2d_), 4*sizeof(float)) == gpuSuccess);
- float kernel_2d_val[] = {3.14f, 2.7f, 0.2f, 7.0f};
- assert(gpuMemcpy(kernel_2d_, kernel_2d_val, 4*sizeof(float), gpuMemcpyHostToDevice) == gpuSuccess);
- assert(gpuMalloc((void**)(&kernel_3d_), 8*sizeof(float)) == gpuSuccess);
- float kernel_3d_val[] = {3.14f, -1.0f, 2.7f, -0.3f, 0.2f, -0.7f, 7.0f, -0.5f};
- assert(gpuMemcpy(kernel_3d_, kernel_3d_val, 8*sizeof(float), gpuMemcpyHostToDevice) == gpuSuccess);
- }
- ~GPUContext() {
- assert(gpuFree(kernel_1d_) == gpuSuccess);
- assert(gpuFree(kernel_2d_) == gpuSuccess);
- assert(gpuFree(kernel_3d_) == gpuSuccess);
- }
- const Eigen::GpuDevice& device() const { return gpu_device_; }
- const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in1() const { return in1_; }
- const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in2() const { return in2_; }
- Eigen::TensorMap<Eigen::Tensor<float, 3> >& out() { return out_; }
- Eigen::TensorMap<Eigen::Tensor<float, 1> > kernel1d() const { return Eigen::TensorMap<Eigen::Tensor<float, 1> >(kernel_1d_, 2); }
- Eigen::TensorMap<Eigen::Tensor<float, 2> > kernel2d() const { return Eigen::TensorMap<Eigen::Tensor<float, 2> >(kernel_2d_, 2, 2); }
- Eigen::TensorMap<Eigen::Tensor<float, 3> > kernel3d() const { return Eigen::TensorMap<Eigen::Tensor<float, 3> >(kernel_3d_, 2, 2, 2); }
- private:
- const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in1_;
- const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in2_;
- Eigen::TensorMap<Eigen::Tensor<float, 3> >& out_;
- float* kernel_1d_;
- float* kernel_2d_;
- float* kernel_3d_;
- Eigen::GpuStreamDevice stream_;
- Eigen::GpuDevice gpu_device_;
- };
- // The actual expression to evaluate
- template <typename Context>
- void test_contextual_eval(Context* context)
- {
- context->out().device(context->device()) = context->in1() + context->in2() * 3.14f + context->in1().constant(2.718f);
- }
- template <typename Context>
- void test_forced_contextual_eval(Context* context)
- {
- context->out().device(context->device()) = (context->in1() + context->in2()).eval() * 3.14f + context->in1().constant(2.718f);
- }
- template <typename Context>
- void test_compound_assignment(Context* context)
- {
- context->out().device(context->device()) = context->in1().constant(2.718f);
- context->out().device(context->device()) += context->in1() + context->in2() * 3.14f;
- }
- template <typename Context>
- void test_contraction(Context* context)
- {
- Eigen::array<std::pair<int, int>, 2> dims;
- dims[0] = std::make_pair(1, 1);
- dims[1] = std::make_pair(2, 2);
- Eigen::array<int, 2> shape(40, 50*70);
- Eigen::DSizes<int, 2> indices(0,0);
- Eigen::DSizes<int, 2> sizes(40,40);
- context->out().reshape(shape).slice(indices, sizes).device(context->device()) = context->in1().contract(context->in2(), dims);
- }
- template <typename Context>
- void test_1d_convolution(Context* context)
- {
- Eigen::DSizes<int, 3> indices(0,0,0);
- Eigen::DSizes<int, 3> sizes(40,49,70);
- Eigen::array<int, 1> dims(1);
- context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel1d(), dims);
- }
- template <typename Context>
- void test_2d_convolution(Context* context)
- {
- Eigen::DSizes<int, 3> indices(0,0,0);
- Eigen::DSizes<int, 3> sizes(40,49,69);
- Eigen::array<int, 2> dims(1,2);
- context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel2d(), dims);
- }
- template <typename Context>
- void test_3d_convolution(Context* context)
- {
- Eigen::DSizes<int, 3> indices(0,0,0);
- Eigen::DSizes<int, 3> sizes(39,49,69);
- Eigen::array<int, 3> dims(0,1,2);
- context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel3d(), dims);
- }
- void test_cpu() {
- Eigen::Tensor<float, 3> in1(40,50,70);
- Eigen::Tensor<float, 3> in2(40,50,70);
- Eigen::Tensor<float, 3> out(40,50,70);
- in1 = in1.random() + in1.constant(10.0f);
- in2 = in2.random() + in2.constant(10.0f);
- CPUContext context(in1, in2, out);
- test_contextual_eval(&context);
- for (int i = 0; i < 40; ++i) {
- for (int j = 0; j < 50; ++j) {
- for (int k = 0; k < 70; ++k) {
- VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f + 2.718f);
- }
- }
- }
- test_forced_contextual_eval(&context);
- for (int i = 0; i < 40; ++i) {
- for (int j = 0; j < 50; ++j) {
- for (int k = 0; k < 70; ++k) {
- VERIFY_IS_APPROX(out(i,j,k), (in1(i,j,k) + in2(i,j,k)) * 3.14f + 2.718f);
- }
- }
- }
- test_compound_assignment(&context);
- for (int i = 0; i < 40; ++i) {
- for (int j = 0; j < 50; ++j) {
- for (int k = 0; k < 70; ++k) {
- VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f + 2.718f);
- }
- }
- }
- test_contraction(&context);
- for (int i = 0; i < 40; ++i) {
- for (int j = 0; j < 40; ++j) {
- const float result = out(i,j,0);
- float expected = 0;
- for (int k = 0; k < 50; ++k) {
- for (int l = 0; l < 70; ++l) {
- expected += in1(i, k, l) * in2(j, k, l);
- }
- }
- VERIFY_IS_APPROX(expected, result);
- }
- }
- test_1d_convolution(&context);
- for (int i = 0; i < 40; ++i) {
- for (int j = 0; j < 49; ++j) {
- for (int k = 0; k < 70; ++k) {
- VERIFY_IS_APPROX(out(i,j,k), (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f));
- }
- }
- }
- test_2d_convolution(&context);
- for (int i = 0; i < 40; ++i) {
- for (int j = 0; j < 49; ++j) {
- for (int k = 0; k < 69; ++k) {
- const float result = out(i,j,k);
- const float expected = (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f) +
- (in1(i,j,k+1) * 0.2f + in1(i,j+1,k+1) * 7.0f);
- if (fabs(expected) < 1e-4f && fabs(result) < 1e-4f) {
- continue;
- }
- VERIFY_IS_APPROX(expected, result);
- }
- }
- }
- test_3d_convolution(&context);
- for (int i = 0; i < 39; ++i) {
- for (int j = 0; j < 49; ++j) {
- for (int k = 0; k < 69; ++k) {
- const float result = out(i,j,k);
- const float expected = (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f +
- in1(i,j,k+1) * 0.2f + in1(i,j+1,k+1) * 7.0f) +
- (in1(i+1,j,k) * -1.0f + in1(i+1,j+1,k) * -0.3f +
- in1(i+1,j,k+1) * -0.7f + in1(i+1,j+1,k+1) * -0.5f);
- if (fabs(expected) < 1e-4f && fabs(result) < 1e-4f) {
- continue;
- }
- VERIFY_IS_APPROX(expected, result);
- }
- }
- }
- }
- void test_gpu() {
- Eigen::Tensor<float, 3> in1(40,50,70);
- Eigen::Tensor<float, 3> in2(40,50,70);
- Eigen::Tensor<float, 3> out(40,50,70);
- in1 = in1.random() + in1.constant(10.0f);
- in2 = in2.random() + in2.constant(10.0f);
- std::size_t in1_bytes = in1.size() * sizeof(float);
- std::size_t in2_bytes = in2.size() * sizeof(float);
- std::size_t out_bytes = out.size() * sizeof(float);
- float* d_in1;
- float* d_in2;
- float* d_out;
- gpuMalloc((void**)(&d_in1), in1_bytes);
- gpuMalloc((void**)(&d_in2), in2_bytes);
- gpuMalloc((void**)(&d_out), out_bytes);
- gpuMemcpy(d_in1, in1.data(), in1_bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_in2, in2.data(), in2_bytes, gpuMemcpyHostToDevice);
- Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in1(d_in1, 40,50,70);
- Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in2(d_in2, 40,50,70);
- Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_out(d_out, 40,50,70);
- GPUContext context(gpu_in1, gpu_in2, gpu_out);
- test_contextual_eval(&context);
- assert(gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost) == gpuSuccess);
- for (int i = 0; i < 40; ++i) {
- for (int j = 0; j < 50; ++j) {
- for (int k = 0; k < 70; ++k) {
- VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f + 2.718f);
- }
- }
- }
- test_forced_contextual_eval(&context);
- assert(gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost) == gpuSuccess);
- for (int i = 0; i < 40; ++i) {
- for (int j = 0; j < 50; ++j) {
- for (int k = 0; k < 70; ++k) {
- VERIFY_IS_APPROX(out(i,j,k), (in1(i,j,k) + in2(i,j,k)) * 3.14f + 2.718f);
- }
- }
- }
- test_compound_assignment(&context);
- assert(gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost) == gpuSuccess);
- for (int i = 0; i < 40; ++i) {
- for (int j = 0; j < 50; ++j) {
- for (int k = 0; k < 70; ++k) {
- VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f + 2.718f);
- }
- }
- }
- test_contraction(&context);
- assert(gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost) == gpuSuccess);
- for (int i = 0; i < 40; ++i) {
- for (int j = 0; j < 40; ++j) {
- const float result = out(i,j,0);
- float expected = 0;
- for (int k = 0; k < 50; ++k) {
- for (int l = 0; l < 70; ++l) {
- expected += in1(i, k, l) * in2(j, k, l);
- }
- }
- VERIFY_IS_APPROX(expected, result);
- }
- }
- test_1d_convolution(&context);
- assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, context.device().stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(context.device().stream()) == gpuSuccess);
- for (int i = 0; i < 40; ++i) {
- for (int j = 0; j < 49; ++j) {
- for (int k = 0; k < 70; ++k) {
- VERIFY_IS_APPROX(out(i,j,k), (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f));
- }
- }
- }
- test_2d_convolution(&context);
- assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, context.device().stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(context.device().stream()) == gpuSuccess);
- for (int i = 0; i < 40; ++i) {
- for (int j = 0; j < 49; ++j) {
- for (int k = 0; k < 69; ++k) {
- const float result = out(i,j,k);
- const float expected = (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f +
- in1(i,j,k+1) * 0.2f + in1(i,j+1,k+1) * 7.0f);
- VERIFY_IS_APPROX(expected, result);
- }
- }
- }
- #if !defined(EIGEN_USE_HIP)
- // disable this test on the HIP platform
- // 3D tensor convolutions seem to hang on the HIP platform
- test_3d_convolution(&context);
- assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, context.device().stream()) == gpuSuccess);
- assert(gpuStreamSynchronize(context.device().stream()) == gpuSuccess);
- for (int i = 0; i < 39; ++i) {
- for (int j = 0; j < 49; ++j) {
- for (int k = 0; k < 69; ++k) {
- const float result = out(i,j,k);
- const float expected = (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f +
- in1(i,j,k+1) * 0.2f + in1(i,j+1,k+1) * 7.0f +
- in1(i+1,j,k) * -1.0f + in1(i+1,j+1,k) * -0.3f +
- in1(i+1,j,k+1) * -0.7f + in1(i+1,j+1,k+1) * -0.5f);
- VERIFY_IS_APPROX(expected, result);
- }
- }
- }
- #endif
-
- }
- EIGEN_DECLARE_TEST(cxx11_tensor_device)
- {
- CALL_SUBTEST_1(test_cpu());
- CALL_SUBTEST_2(test_gpu());
- }
|