123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <Eigen/CXX11/Tensor>
- using Eigen::Tensor;
- template <int DataLayout>
- static void test_simple_broadcasting()
- {
- Tensor<float, 4, DataLayout> tensor(2,3,5,7);
- tensor.setRandom();
- array<ptrdiff_t, 4> broadcasts;
- broadcasts[0] = 1;
- broadcasts[1] = 1;
- broadcasts[2] = 1;
- broadcasts[3] = 1;
- Tensor<float, 4, DataLayout> no_broadcast;
- no_broadcast = tensor.broadcast(broadcasts);
- VERIFY_IS_EQUAL(no_broadcast.dimension(0), 2);
- VERIFY_IS_EQUAL(no_broadcast.dimension(1), 3);
- VERIFY_IS_EQUAL(no_broadcast.dimension(2), 5);
- VERIFY_IS_EQUAL(no_broadcast.dimension(3), 7);
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
- for (int k = 0; k < 5; ++k) {
- for (int l = 0; l < 7; ++l) {
- VERIFY_IS_EQUAL(tensor(i,j,k,l), no_broadcast(i,j,k,l));
- }
- }
- }
- }
- broadcasts[0] = 2;
- broadcasts[1] = 3;
- broadcasts[2] = 1;
- broadcasts[3] = 4;
- Tensor<float, 4, DataLayout> broadcast;
- broadcast = tensor.broadcast(broadcasts);
- VERIFY_IS_EQUAL(broadcast.dimension(0), 4);
- VERIFY_IS_EQUAL(broadcast.dimension(1), 9);
- VERIFY_IS_EQUAL(broadcast.dimension(2), 5);
- VERIFY_IS_EQUAL(broadcast.dimension(3), 28);
- for (int i = 0; i < 4; ++i) {
- for (int j = 0; j < 9; ++j) {
- for (int k = 0; k < 5; ++k) {
- for (int l = 0; l < 28; ++l) {
- VERIFY_IS_EQUAL(tensor(i%2,j%3,k%5,l%7), broadcast(i,j,k,l));
- }
- }
- }
- }
- }
- template <int DataLayout>
- static void test_vectorized_broadcasting()
- {
- Tensor<float, 3, DataLayout> tensor(8,3,5);
- tensor.setRandom();
- array<ptrdiff_t, 3> broadcasts;
- broadcasts[0] = 2;
- broadcasts[1] = 3;
- broadcasts[2] = 4;
- Tensor<float, 3, DataLayout> broadcast;
- broadcast = tensor.broadcast(broadcasts);
- VERIFY_IS_EQUAL(broadcast.dimension(0), 16);
- VERIFY_IS_EQUAL(broadcast.dimension(1), 9);
- VERIFY_IS_EQUAL(broadcast.dimension(2), 20);
- for (int i = 0; i < 16; ++i) {
- for (int j = 0; j < 9; ++j) {
- for (int k = 0; k < 20; ++k) {
- VERIFY_IS_EQUAL(tensor(i%8,j%3,k%5), broadcast(i,j,k));
- }
- }
- }
- #if EIGEN_HAS_VARIADIC_TEMPLATES
- tensor.resize(11,3,5);
- #else
- array<Index, 3> new_dims;
- new_dims[0] = 11;
- new_dims[1] = 3;
- new_dims[2] = 5;
- tensor.resize(new_dims);
- #endif
- tensor.setRandom();
- broadcast = tensor.broadcast(broadcasts);
- VERIFY_IS_EQUAL(broadcast.dimension(0), 22);
- VERIFY_IS_EQUAL(broadcast.dimension(1), 9);
- VERIFY_IS_EQUAL(broadcast.dimension(2), 20);
- for (int i = 0; i < 22; ++i) {
- for (int j = 0; j < 9; ++j) {
- for (int k = 0; k < 20; ++k) {
- VERIFY_IS_EQUAL(tensor(i%11,j%3,k%5), broadcast(i,j,k));
- }
- }
- }
- }
- template <int DataLayout>
- static void test_static_broadcasting()
- {
- Tensor<float, 3, DataLayout> tensor(8,3,5);
- tensor.setRandom();
- #if defined(EIGEN_HAS_INDEX_LIST)
- Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>, Eigen::type2index<4>> broadcasts;
- #else
- Eigen::array<int, 3> broadcasts;
- broadcasts[0] = 2;
- broadcasts[1] = 3;
- broadcasts[2] = 4;
- #endif
- Tensor<float, 3, DataLayout> broadcast;
- broadcast = tensor.broadcast(broadcasts);
- VERIFY_IS_EQUAL(broadcast.dimension(0), 16);
- VERIFY_IS_EQUAL(broadcast.dimension(1), 9);
- VERIFY_IS_EQUAL(broadcast.dimension(2), 20);
- for (int i = 0; i < 16; ++i) {
- for (int j = 0; j < 9; ++j) {
- for (int k = 0; k < 20; ++k) {
- VERIFY_IS_EQUAL(tensor(i%8,j%3,k%5), broadcast(i,j,k));
- }
- }
- }
- #if EIGEN_HAS_VARIADIC_TEMPLATES
- tensor.resize(11,3,5);
- #else
- array<Index, 3> new_dims;
- new_dims[0] = 11;
- new_dims[1] = 3;
- new_dims[2] = 5;
- tensor.resize(new_dims);
- #endif
- tensor.setRandom();
- broadcast = tensor.broadcast(broadcasts);
- VERIFY_IS_EQUAL(broadcast.dimension(0), 22);
- VERIFY_IS_EQUAL(broadcast.dimension(1), 9);
- VERIFY_IS_EQUAL(broadcast.dimension(2), 20);
- for (int i = 0; i < 22; ++i) {
- for (int j = 0; j < 9; ++j) {
- for (int k = 0; k < 20; ++k) {
- VERIFY_IS_EQUAL(tensor(i%11,j%3,k%5), broadcast(i,j,k));
- }
- }
- }
- }
- template <int DataLayout>
- static void test_fixed_size_broadcasting()
- {
- // Need to add a [] operator to the Size class for this to work
- #if 0
- Tensor<float, 1, DataLayout> t1(10);
- t1.setRandom();
- TensorFixedSize<float, Sizes<1>, DataLayout> t2;
- t2 = t2.constant(20.0f);
- Tensor<float, 1, DataLayout> t3 = t1 + t2.broadcast(Eigen::array<int, 1>{{10}});
- for (int i = 0; i < 10; ++i) {
- VERIFY_IS_APPROX(t3(i), t1(i) + t2(0));
- }
- TensorMap<TensorFixedSize<float, Sizes<1>, DataLayout> > t4(t2.data(), {{1}});
- Tensor<float, 1, DataLayout> t5 = t1 + t4.broadcast(Eigen::array<int, 1>{{10}});
- for (int i = 0; i < 10; ++i) {
- VERIFY_IS_APPROX(t5(i), t1(i) + t2(0));
- }
- #endif
- }
- template <int DataLayout>
- static void test_simple_broadcasting_one_by_n()
- {
- Tensor<float, 4, DataLayout> tensor(1,13,5,7);
- tensor.setRandom();
- array<ptrdiff_t, 4> broadcasts;
- broadcasts[0] = 9;
- broadcasts[1] = 1;
- broadcasts[2] = 1;
- broadcasts[3] = 1;
- Tensor<float, 4, DataLayout> broadcast;
- broadcast = tensor.broadcast(broadcasts);
- VERIFY_IS_EQUAL(broadcast.dimension(0), 9);
- VERIFY_IS_EQUAL(broadcast.dimension(1), 13);
- VERIFY_IS_EQUAL(broadcast.dimension(2), 5);
- VERIFY_IS_EQUAL(broadcast.dimension(3), 7);
- for (int i = 0; i < 9; ++i) {
- for (int j = 0; j < 13; ++j) {
- for (int k = 0; k < 5; ++k) {
- for (int l = 0; l < 7; ++l) {
- VERIFY_IS_EQUAL(tensor(i%1,j%13,k%5,l%7), broadcast(i,j,k,l));
- }
- }
- }
- }
- }
- template <int DataLayout>
- static void test_simple_broadcasting_n_by_one()
- {
- Tensor<float, 4, DataLayout> tensor(7,3,5,1);
- tensor.setRandom();
- array<ptrdiff_t, 4> broadcasts;
- broadcasts[0] = 1;
- broadcasts[1] = 1;
- broadcasts[2] = 1;
- broadcasts[3] = 19;
- Tensor<float, 4, DataLayout> broadcast;
- broadcast = tensor.broadcast(broadcasts);
- VERIFY_IS_EQUAL(broadcast.dimension(0), 7);
- VERIFY_IS_EQUAL(broadcast.dimension(1), 3);
- VERIFY_IS_EQUAL(broadcast.dimension(2), 5);
- VERIFY_IS_EQUAL(broadcast.dimension(3), 19);
- for (int i = 0; i < 7; ++i) {
- for (int j = 0; j < 3; ++j) {
- for (int k = 0; k < 5; ++k) {
- for (int l = 0; l < 19; ++l) {
- VERIFY_IS_EQUAL(tensor(i%7,j%3,k%5,l%1), broadcast(i,j,k,l));
- }
- }
- }
- }
- }
- template <int DataLayout>
- static void test_simple_broadcasting_one_by_n_by_one_1d()
- {
- Tensor<float, 3, DataLayout> tensor(1,7,1);
- tensor.setRandom();
- array<ptrdiff_t, 3> broadcasts;
- broadcasts[0] = 5;
- broadcasts[1] = 1;
- broadcasts[2] = 13;
- Tensor<float, 3, DataLayout> broadcasted;
- broadcasted = tensor.broadcast(broadcasts);
- VERIFY_IS_EQUAL(broadcasted.dimension(0), 5);
- VERIFY_IS_EQUAL(broadcasted.dimension(1), 7);
- VERIFY_IS_EQUAL(broadcasted.dimension(2), 13);
- for (int i = 0; i < 5; ++i) {
- for (int j = 0; j < 7; ++j) {
- for (int k = 0; k < 13; ++k) {
- VERIFY_IS_EQUAL(tensor(0,j%7,0), broadcasted(i,j,k));
- }
- }
- }
- }
- template <int DataLayout>
- static void test_simple_broadcasting_one_by_n_by_one_2d()
- {
- Tensor<float, 4, DataLayout> tensor(1,7,13,1);
- tensor.setRandom();
- array<ptrdiff_t, 4> broadcasts;
- broadcasts[0] = 5;
- broadcasts[1] = 1;
- broadcasts[2] = 1;
- broadcasts[3] = 19;
- Tensor<float, 4, DataLayout> broadcast;
- broadcast = tensor.broadcast(broadcasts);
- VERIFY_IS_EQUAL(broadcast.dimension(0), 5);
- VERIFY_IS_EQUAL(broadcast.dimension(1), 7);
- VERIFY_IS_EQUAL(broadcast.dimension(2), 13);
- VERIFY_IS_EQUAL(broadcast.dimension(3), 19);
- for (int i = 0; i < 5; ++i) {
- for (int j = 0; j < 7; ++j) {
- for (int k = 0; k < 13; ++k) {
- for (int l = 0; l < 19; ++l) {
- VERIFY_IS_EQUAL(tensor(0,j%7,k%13,0), broadcast(i,j,k,l));
- }
- }
- }
- }
- }
- EIGEN_DECLARE_TEST(cxx11_tensor_broadcasting)
- {
- CALL_SUBTEST(test_simple_broadcasting<ColMajor>());
- CALL_SUBTEST(test_simple_broadcasting<RowMajor>());
- CALL_SUBTEST(test_vectorized_broadcasting<ColMajor>());
- CALL_SUBTEST(test_vectorized_broadcasting<RowMajor>());
- CALL_SUBTEST(test_static_broadcasting<ColMajor>());
- CALL_SUBTEST(test_static_broadcasting<RowMajor>());
- CALL_SUBTEST(test_fixed_size_broadcasting<ColMajor>());
- CALL_SUBTEST(test_fixed_size_broadcasting<RowMajor>());
- CALL_SUBTEST(test_simple_broadcasting_one_by_n<RowMajor>());
- CALL_SUBTEST(test_simple_broadcasting_n_by_one<RowMajor>());
- CALL_SUBTEST(test_simple_broadcasting_one_by_n<ColMajor>());
- CALL_SUBTEST(test_simple_broadcasting_n_by_one<ColMajor>());
- CALL_SUBTEST(test_simple_broadcasting_one_by_n_by_one_1d<ColMajor>());
- CALL_SUBTEST(test_simple_broadcasting_one_by_n_by_one_2d<ColMajor>());
- CALL_SUBTEST(test_simple_broadcasting_one_by_n_by_one_1d<RowMajor>());
- CALL_SUBTEST(test_simple_broadcasting_one_by_n_by_one_2d<RowMajor>());
- }
|