123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2009 Mark Borgerding mark a borgerding net
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <unsupported/Eigen/FFT>
- template <typename T>
- std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); }
- using namespace std;
- using namespace Eigen;
- template < typename T>
- complex<long double> promote(complex<T> x) { return complex<long double>((long double)x.real(),(long double)x.imag()); }
- complex<long double> promote(float x) { return complex<long double>((long double)x); }
- complex<long double> promote(double x) { return complex<long double>((long double)x); }
- complex<long double> promote(long double x) { return complex<long double>((long double)x); }
-
- template <typename VT1,typename VT2>
- long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf)
- {
- long double totalpower=0;
- long double difpower=0;
- long double pi = acos((long double)-1 );
- for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) {
- complex<long double> acc = 0;
- long double phinc = (long double)(-2.)*k0* pi / timebuf.size();
- for (size_t k1=0;k1<(size_t)timebuf.size();++k1) {
- acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
- }
- totalpower += numext::abs2(acc);
- complex<long double> x = promote(fftbuf[k0]);
- complex<long double> dif = acc - x;
- difpower += numext::abs2(dif);
- //cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(numext::abs2(dif)) << endl;
- }
- cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
- return sqrt(difpower/totalpower);
- }
- template <typename VT1,typename VT2>
- long double dif_rmse( const VT1 buf1,const VT2 buf2)
- {
- long double totalpower=0;
- long double difpower=0;
- size_t n = (min)( buf1.size(),buf2.size() );
- for (size_t k=0;k<n;++k) {
- totalpower += (long double)((numext::abs2( buf1[k] ) + numext::abs2(buf2[k]) )/2);
- difpower += (long double)(numext::abs2(buf1[k] - buf2[k]));
- }
- return sqrt(difpower/totalpower);
- }
- enum { StdVectorContainer, EigenVectorContainer };
- template<int Container, typename Scalar> struct VectorType;
- template<typename Scalar> struct VectorType<StdVectorContainer,Scalar>
- {
- typedef vector<Scalar> type;
- };
- template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar>
- {
- typedef Matrix<Scalar,Dynamic,1> type;
- };
- template <int Container, typename T>
- void test_scalar_generic(int nfft)
- {
- typedef typename FFT<T>::Complex Complex;
- typedef typename FFT<T>::Scalar Scalar;
- typedef typename VectorType<Container,Scalar>::type ScalarVector;
- typedef typename VectorType<Container,Complex>::type ComplexVector;
- FFT<T> fft;
- ScalarVector tbuf(nfft);
- ComplexVector freqBuf;
- for (int k=0;k<nfft;++k)
- tbuf[k]= (T)( rand()/(double)RAND_MAX - .5);
- // make sure it DOESN'T give the right full spectrum answer
- // if we've asked for half-spectrum
- fft.SetFlag(fft.HalfSpectrum );
- fft.fwd( freqBuf,tbuf);
- VERIFY((size_t)freqBuf.size() == (size_t)( (nfft>>1)+1) );
- VERIFY( T(fft_rmse(freqBuf,tbuf)) < test_precision<T>() );// gross check
- fft.ClearFlag(fft.HalfSpectrum );
- fft.fwd( freqBuf,tbuf);
- VERIFY( (size_t)freqBuf.size() == (size_t)nfft);
- VERIFY( T(fft_rmse(freqBuf,tbuf)) < test_precision<T>() );// gross check
- if (nfft&1)
- return; // odd FFTs get the wrong size inverse FFT
- ScalarVector tbuf2;
- fft.inv( tbuf2 , freqBuf);
- VERIFY( T(dif_rmse(tbuf,tbuf2)) < test_precision<T>() );// gross check
- // verify that the Unscaled flag takes effect
- ScalarVector tbuf3;
- fft.SetFlag(fft.Unscaled);
- fft.inv( tbuf3 , freqBuf);
- for (int k=0;k<nfft;++k)
- tbuf3[k] *= T(1./nfft);
- //for (size_t i=0;i<(size_t) tbuf.size();++i)
- // cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " - in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) << endl;
- VERIFY( T(dif_rmse(tbuf,tbuf3)) < test_precision<T>() );// gross check
- // verify that ClearFlag works
- fft.ClearFlag(fft.Unscaled);
- fft.inv( tbuf2 , freqBuf);
- VERIFY( T(dif_rmse(tbuf,tbuf2)) < test_precision<T>() );// gross check
- }
- template <typename T>
- void test_scalar(int nfft)
- {
- test_scalar_generic<StdVectorContainer,T>(nfft);
- //test_scalar_generic<EigenVectorContainer,T>(nfft);
- }
- template <int Container, typename T>
- void test_complex_generic(int nfft)
- {
- typedef typename FFT<T>::Complex Complex;
- typedef typename VectorType<Container,Complex>::type ComplexVector;
- FFT<T> fft;
- ComplexVector inbuf(nfft);
- ComplexVector outbuf;
- ComplexVector buf3;
- for (int k=0;k<nfft;++k)
- inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
- fft.fwd( outbuf , inbuf);
- VERIFY( T(fft_rmse(outbuf,inbuf)) < test_precision<T>() );// gross check
- fft.inv( buf3 , outbuf);
- VERIFY( T(dif_rmse(inbuf,buf3)) < test_precision<T>() );// gross check
- // verify that the Unscaled flag takes effect
- ComplexVector buf4;
- fft.SetFlag(fft.Unscaled);
- fft.inv( buf4 , outbuf);
- for (int k=0;k<nfft;++k)
- buf4[k] *= T(1./nfft);
- VERIFY( T(dif_rmse(inbuf,buf4)) < test_precision<T>() );// gross check
- // verify that ClearFlag works
- fft.ClearFlag(fft.Unscaled);
- fft.inv( buf3 , outbuf);
- VERIFY( T(dif_rmse(inbuf,buf3)) < test_precision<T>() );// gross check
- }
- template <typename T>
- void test_complex(int nfft)
- {
- test_complex_generic<StdVectorContainer,T>(nfft);
- test_complex_generic<EigenVectorContainer,T>(nfft);
- }
- /*
- template <typename T,int nrows,int ncols>
- void test_complex2d()
- {
- typedef typename Eigen::FFT<T>::Complex Complex;
- FFT<T> fft;
- Eigen::Matrix<Complex,nrows,ncols> src,src2,dst,dst2;
- src = Eigen::Matrix<Complex,nrows,ncols>::Random();
- //src = Eigen::Matrix<Complex,nrows,ncols>::Identity();
- for (int k=0;k<ncols;k++) {
- Eigen::Matrix<Complex,nrows,1> tmpOut;
- fft.fwd( tmpOut,src.col(k) );
- dst2.col(k) = tmpOut;
- }
- for (int k=0;k<nrows;k++) {
- Eigen::Matrix<Complex,1,ncols> tmpOut;
- fft.fwd( tmpOut, dst2.row(k) );
- dst2.row(k) = tmpOut;
- }
- fft.fwd2(dst.data(),src.data(),ncols,nrows);
- fft.inv2(src2.data(),dst.data(),ncols,nrows);
- VERIFY( (src-src2).norm() < test_precision<T>() );
- VERIFY( (dst-dst2).norm() < test_precision<T>() );
- }
- */
- void test_return_by_value(int len)
- {
- VectorXf in;
- VectorXf in1;
- in.setRandom( len );
- VectorXcf out1,out2;
- FFT<float> fft;
- fft.SetFlag(fft.HalfSpectrum );
- fft.fwd(out1,in);
- out2 = fft.fwd(in);
- VERIFY( (out1-out2).norm() < test_precision<float>() );
- in1 = fft.inv(out1);
- VERIFY( (in1-in).norm() < test_precision<float>() );
- }
- EIGEN_DECLARE_TEST(FFTW)
- {
- CALL_SUBTEST( test_return_by_value(32) );
- //CALL_SUBTEST( ( test_complex2d<float,4,8> () ) ); CALL_SUBTEST( ( test_complex2d<double,4,8> () ) );
- //CALL_SUBTEST( ( test_complex2d<long double,4,8> () ) );
- CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) );
- CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) );
- CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) );
- CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) );
- CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) );
- CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) );
- CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) );
- CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) );
- CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) );
- CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) );
- CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) );
- CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) );
-
- #ifdef EIGEN_HAS_FFTWL
- CALL_SUBTEST( test_complex<long double>(32) );
- CALL_SUBTEST( test_complex<long double>(256) );
- CALL_SUBTEST( test_complex<long double>(3*8) );
- CALL_SUBTEST( test_complex<long double>(5*32) );
- CALL_SUBTEST( test_complex<long double>(2*3*4) );
- CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
- CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
-
- CALL_SUBTEST( test_scalar<long double>(32) );
- CALL_SUBTEST( test_scalar<long double>(45) );
- CALL_SUBTEST( test_scalar<long double>(50) );
- CALL_SUBTEST( test_scalar<long double>(256) );
- CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
- #endif
- }
|