123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- template<typename MatrixType> void matrixVisitor(const MatrixType& p)
- {
- typedef typename MatrixType::Scalar Scalar;
- Index rows = p.rows();
- Index cols = p.cols();
- // construct a random matrix where all coefficients are different
- MatrixType m;
- m = MatrixType::Random(rows, cols);
- for(Index i = 0; i < m.size(); i++)
- for(Index i2 = 0; i2 < i; i2++)
- while(m(i) == m(i2)) // yes, ==
- m(i) = internal::random<Scalar>();
-
- Scalar minc = Scalar(1000), maxc = Scalar(-1000);
- Index minrow=0,mincol=0,maxrow=0,maxcol=0;
- for(Index j = 0; j < cols; j++)
- for(Index i = 0; i < rows; i++)
- {
- if(m(i,j) < minc)
- {
- minc = m(i,j);
- minrow = i;
- mincol = j;
- }
- if(m(i,j) > maxc)
- {
- maxc = m(i,j);
- maxrow = i;
- maxcol = j;
- }
- }
- Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol;
- Scalar eigen_minc, eigen_maxc;
- eigen_minc = m.minCoeff(&eigen_minrow,&eigen_mincol);
- eigen_maxc = m.maxCoeff(&eigen_maxrow,&eigen_maxcol);
- VERIFY(minrow == eigen_minrow);
- VERIFY(maxrow == eigen_maxrow);
- VERIFY(mincol == eigen_mincol);
- VERIFY(maxcol == eigen_maxcol);
- VERIFY_IS_APPROX(minc, eigen_minc);
- VERIFY_IS_APPROX(maxc, eigen_maxc);
- VERIFY_IS_APPROX(minc, m.minCoeff());
- VERIFY_IS_APPROX(maxc, m.maxCoeff());
- eigen_maxc = (m.adjoint()*m).maxCoeff(&eigen_maxrow,&eigen_maxcol);
- Index maxrow2=0,maxcol2=0;
- eigen_maxc = (m.adjoint()*m).eval().maxCoeff(&maxrow2,&maxcol2);
- VERIFY(maxrow2 == eigen_maxrow);
- VERIFY(maxcol2 == eigen_maxcol);
- if (!NumTraits<Scalar>::IsInteger && m.size() > 2) {
- // Test NaN propagation by replacing an element with NaN.
- bool stop = false;
- for (Index j = 0; j < cols && !stop; ++j) {
- for (Index i = 0; i < rows && !stop; ++i) {
- if (!(j == mincol && i == minrow) &&
- !(j == maxcol && i == maxrow)) {
- m(i,j) = NumTraits<Scalar>::quiet_NaN();
- stop = true;
- break;
- }
- }
- }
- eigen_minc = m.template minCoeff<PropagateNumbers>(&eigen_minrow, &eigen_mincol);
- eigen_maxc = m.template maxCoeff<PropagateNumbers>(&eigen_maxrow, &eigen_maxcol);
- VERIFY(minrow == eigen_minrow);
- VERIFY(maxrow == eigen_maxrow);
- VERIFY(mincol == eigen_mincol);
- VERIFY(maxcol == eigen_maxcol);
- VERIFY_IS_APPROX(minc, eigen_minc);
- VERIFY_IS_APPROX(maxc, eigen_maxc);
- VERIFY_IS_APPROX(minc, m.template minCoeff<PropagateNumbers>());
- VERIFY_IS_APPROX(maxc, m.template maxCoeff<PropagateNumbers>());
- eigen_minc = m.template minCoeff<PropagateNaN>(&eigen_minrow, &eigen_mincol);
- eigen_maxc = m.template maxCoeff<PropagateNaN>(&eigen_maxrow, &eigen_maxcol);
- VERIFY(minrow != eigen_minrow || mincol != eigen_mincol);
- VERIFY(maxrow != eigen_maxrow || maxcol != eigen_maxcol);
- VERIFY((numext::isnan)(eigen_minc));
- VERIFY((numext::isnan)(eigen_maxc));
- }
- }
- template<typename VectorType> void vectorVisitor(const VectorType& w)
- {
- typedef typename VectorType::Scalar Scalar;
- Index size = w.size();
- // construct a random vector where all coefficients are different
- VectorType v;
- v = VectorType::Random(size);
- for(Index i = 0; i < size; i++)
- for(Index i2 = 0; i2 < i; i2++)
- while(v(i) == v(i2)) // yes, ==
- v(i) = internal::random<Scalar>();
-
- Scalar minc = v(0), maxc = v(0);
- Index minidx=0, maxidx=0;
- for(Index i = 0; i < size; i++)
- {
- if(v(i) < minc)
- {
- minc = v(i);
- minidx = i;
- }
- if(v(i) > maxc)
- {
- maxc = v(i);
- maxidx = i;
- }
- }
- Index eigen_minidx, eigen_maxidx;
- Scalar eigen_minc, eigen_maxc;
- eigen_minc = v.minCoeff(&eigen_minidx);
- eigen_maxc = v.maxCoeff(&eigen_maxidx);
- VERIFY(minidx == eigen_minidx);
- VERIFY(maxidx == eigen_maxidx);
- VERIFY_IS_APPROX(minc, eigen_minc);
- VERIFY_IS_APPROX(maxc, eigen_maxc);
- VERIFY_IS_APPROX(minc, v.minCoeff());
- VERIFY_IS_APPROX(maxc, v.maxCoeff());
-
- Index idx0 = internal::random<Index>(0,size-1);
- Index idx1 = eigen_minidx;
- Index idx2 = eigen_maxidx;
- VectorType v1(v), v2(v);
- v1(idx0) = v1(idx1);
- v2(idx0) = v2(idx2);
- v1.minCoeff(&eigen_minidx);
- v2.maxCoeff(&eigen_maxidx);
- VERIFY(eigen_minidx == (std::min)(idx0,idx1));
- VERIFY(eigen_maxidx == (std::min)(idx0,idx2));
- if (!NumTraits<Scalar>::IsInteger && size > 2) {
- // Test NaN propagation by replacing an element with NaN.
- for (Index i = 0; i < size; ++i) {
- if (i != minidx && i != maxidx) {
- v(i) = NumTraits<Scalar>::quiet_NaN();
- break;
- }
- }
- eigen_minc = v.template minCoeff<PropagateNumbers>(&eigen_minidx);
- eigen_maxc = v.template maxCoeff<PropagateNumbers>(&eigen_maxidx);
- VERIFY(minidx == eigen_minidx);
- VERIFY(maxidx == eigen_maxidx);
- VERIFY_IS_APPROX(minc, eigen_minc);
- VERIFY_IS_APPROX(maxc, eigen_maxc);
- VERIFY_IS_APPROX(minc, v.template minCoeff<PropagateNumbers>());
- VERIFY_IS_APPROX(maxc, v.template maxCoeff<PropagateNumbers>());
- eigen_minc = v.template minCoeff<PropagateNaN>(&eigen_minidx);
- eigen_maxc = v.template maxCoeff<PropagateNaN>(&eigen_maxidx);
- VERIFY(minidx != eigen_minidx);
- VERIFY(maxidx != eigen_maxidx);
- VERIFY((numext::isnan)(eigen_minc));
- VERIFY((numext::isnan)(eigen_maxc));
- }
- }
- EIGEN_DECLARE_TEST(visitor)
- {
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( matrixVisitor(Matrix<float, 1, 1>()) );
- CALL_SUBTEST_2( matrixVisitor(Matrix2f()) );
- CALL_SUBTEST_3( matrixVisitor(Matrix4d()) );
- CALL_SUBTEST_4( matrixVisitor(MatrixXd(8, 12)) );
- CALL_SUBTEST_5( matrixVisitor(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 20)) );
- CALL_SUBTEST_6( matrixVisitor(MatrixXi(8, 12)) );
- }
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_7( vectorVisitor(Vector4f()) );
- CALL_SUBTEST_7( vectorVisitor(Matrix<int,12,1>()) );
- CALL_SUBTEST_8( vectorVisitor(VectorXd(10)) );
- CALL_SUBTEST_9( vectorVisitor(RowVectorXd(10)) );
- CALL_SUBTEST_10( vectorVisitor(VectorXf(33)) );
- }
- }
|