visitor.cpp 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193
  1. // This file is part of Eigen, a lightweight C++ template library
  2. // for linear algebra.
  3. //
  4. // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
  5. //
  6. // This Source Code Form is subject to the terms of the Mozilla
  7. // Public License v. 2.0. If a copy of the MPL was not distributed
  8. // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
  9. #include "main.h"
  10. template<typename MatrixType> void matrixVisitor(const MatrixType& p)
  11. {
  12. typedef typename MatrixType::Scalar Scalar;
  13. Index rows = p.rows();
  14. Index cols = p.cols();
  15. // construct a random matrix where all coefficients are different
  16. MatrixType m;
  17. m = MatrixType::Random(rows, cols);
  18. for(Index i = 0; i < m.size(); i++)
  19. for(Index i2 = 0; i2 < i; i2++)
  20. while(m(i) == m(i2)) // yes, ==
  21. m(i) = internal::random<Scalar>();
  22. Scalar minc = Scalar(1000), maxc = Scalar(-1000);
  23. Index minrow=0,mincol=0,maxrow=0,maxcol=0;
  24. for(Index j = 0; j < cols; j++)
  25. for(Index i = 0; i < rows; i++)
  26. {
  27. if(m(i,j) < minc)
  28. {
  29. minc = m(i,j);
  30. minrow = i;
  31. mincol = j;
  32. }
  33. if(m(i,j) > maxc)
  34. {
  35. maxc = m(i,j);
  36. maxrow = i;
  37. maxcol = j;
  38. }
  39. }
  40. Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol;
  41. Scalar eigen_minc, eigen_maxc;
  42. eigen_minc = m.minCoeff(&eigen_minrow,&eigen_mincol);
  43. eigen_maxc = m.maxCoeff(&eigen_maxrow,&eigen_maxcol);
  44. VERIFY(minrow == eigen_minrow);
  45. VERIFY(maxrow == eigen_maxrow);
  46. VERIFY(mincol == eigen_mincol);
  47. VERIFY(maxcol == eigen_maxcol);
  48. VERIFY_IS_APPROX(minc, eigen_minc);
  49. VERIFY_IS_APPROX(maxc, eigen_maxc);
  50. VERIFY_IS_APPROX(minc, m.minCoeff());
  51. VERIFY_IS_APPROX(maxc, m.maxCoeff());
  52. eigen_maxc = (m.adjoint()*m).maxCoeff(&eigen_maxrow,&eigen_maxcol);
  53. Index maxrow2=0,maxcol2=0;
  54. eigen_maxc = (m.adjoint()*m).eval().maxCoeff(&maxrow2,&maxcol2);
  55. VERIFY(maxrow2 == eigen_maxrow);
  56. VERIFY(maxcol2 == eigen_maxcol);
  57. if (!NumTraits<Scalar>::IsInteger && m.size() > 2) {
  58. // Test NaN propagation by replacing an element with NaN.
  59. bool stop = false;
  60. for (Index j = 0; j < cols && !stop; ++j) {
  61. for (Index i = 0; i < rows && !stop; ++i) {
  62. if (!(j == mincol && i == minrow) &&
  63. !(j == maxcol && i == maxrow)) {
  64. m(i,j) = NumTraits<Scalar>::quiet_NaN();
  65. stop = true;
  66. break;
  67. }
  68. }
  69. }
  70. eigen_minc = m.template minCoeff<PropagateNumbers>(&eigen_minrow, &eigen_mincol);
  71. eigen_maxc = m.template maxCoeff<PropagateNumbers>(&eigen_maxrow, &eigen_maxcol);
  72. VERIFY(minrow == eigen_minrow);
  73. VERIFY(maxrow == eigen_maxrow);
  74. VERIFY(mincol == eigen_mincol);
  75. VERIFY(maxcol == eigen_maxcol);
  76. VERIFY_IS_APPROX(minc, eigen_minc);
  77. VERIFY_IS_APPROX(maxc, eigen_maxc);
  78. VERIFY_IS_APPROX(minc, m.template minCoeff<PropagateNumbers>());
  79. VERIFY_IS_APPROX(maxc, m.template maxCoeff<PropagateNumbers>());
  80. eigen_minc = m.template minCoeff<PropagateNaN>(&eigen_minrow, &eigen_mincol);
  81. eigen_maxc = m.template maxCoeff<PropagateNaN>(&eigen_maxrow, &eigen_maxcol);
  82. VERIFY(minrow != eigen_minrow || mincol != eigen_mincol);
  83. VERIFY(maxrow != eigen_maxrow || maxcol != eigen_maxcol);
  84. VERIFY((numext::isnan)(eigen_minc));
  85. VERIFY((numext::isnan)(eigen_maxc));
  86. }
  87. }
  88. template<typename VectorType> void vectorVisitor(const VectorType& w)
  89. {
  90. typedef typename VectorType::Scalar Scalar;
  91. Index size = w.size();
  92. // construct a random vector where all coefficients are different
  93. VectorType v;
  94. v = VectorType::Random(size);
  95. for(Index i = 0; i < size; i++)
  96. for(Index i2 = 0; i2 < i; i2++)
  97. while(v(i) == v(i2)) // yes, ==
  98. v(i) = internal::random<Scalar>();
  99. Scalar minc = v(0), maxc = v(0);
  100. Index minidx=0, maxidx=0;
  101. for(Index i = 0; i < size; i++)
  102. {
  103. if(v(i) < minc)
  104. {
  105. minc = v(i);
  106. minidx = i;
  107. }
  108. if(v(i) > maxc)
  109. {
  110. maxc = v(i);
  111. maxidx = i;
  112. }
  113. }
  114. Index eigen_minidx, eigen_maxidx;
  115. Scalar eigen_minc, eigen_maxc;
  116. eigen_minc = v.minCoeff(&eigen_minidx);
  117. eigen_maxc = v.maxCoeff(&eigen_maxidx);
  118. VERIFY(minidx == eigen_minidx);
  119. VERIFY(maxidx == eigen_maxidx);
  120. VERIFY_IS_APPROX(minc, eigen_minc);
  121. VERIFY_IS_APPROX(maxc, eigen_maxc);
  122. VERIFY_IS_APPROX(minc, v.minCoeff());
  123. VERIFY_IS_APPROX(maxc, v.maxCoeff());
  124. Index idx0 = internal::random<Index>(0,size-1);
  125. Index idx1 = eigen_minidx;
  126. Index idx2 = eigen_maxidx;
  127. VectorType v1(v), v2(v);
  128. v1(idx0) = v1(idx1);
  129. v2(idx0) = v2(idx2);
  130. v1.minCoeff(&eigen_minidx);
  131. v2.maxCoeff(&eigen_maxidx);
  132. VERIFY(eigen_minidx == (std::min)(idx0,idx1));
  133. VERIFY(eigen_maxidx == (std::min)(idx0,idx2));
  134. if (!NumTraits<Scalar>::IsInteger && size > 2) {
  135. // Test NaN propagation by replacing an element with NaN.
  136. for (Index i = 0; i < size; ++i) {
  137. if (i != minidx && i != maxidx) {
  138. v(i) = NumTraits<Scalar>::quiet_NaN();
  139. break;
  140. }
  141. }
  142. eigen_minc = v.template minCoeff<PropagateNumbers>(&eigen_minidx);
  143. eigen_maxc = v.template maxCoeff<PropagateNumbers>(&eigen_maxidx);
  144. VERIFY(minidx == eigen_minidx);
  145. VERIFY(maxidx == eigen_maxidx);
  146. VERIFY_IS_APPROX(minc, eigen_minc);
  147. VERIFY_IS_APPROX(maxc, eigen_maxc);
  148. VERIFY_IS_APPROX(minc, v.template minCoeff<PropagateNumbers>());
  149. VERIFY_IS_APPROX(maxc, v.template maxCoeff<PropagateNumbers>());
  150. eigen_minc = v.template minCoeff<PropagateNaN>(&eigen_minidx);
  151. eigen_maxc = v.template maxCoeff<PropagateNaN>(&eigen_maxidx);
  152. VERIFY(minidx != eigen_minidx);
  153. VERIFY(maxidx != eigen_maxidx);
  154. VERIFY((numext::isnan)(eigen_minc));
  155. VERIFY((numext::isnan)(eigen_maxc));
  156. }
  157. }
  158. EIGEN_DECLARE_TEST(visitor)
  159. {
  160. for(int i = 0; i < g_repeat; i++) {
  161. CALL_SUBTEST_1( matrixVisitor(Matrix<float, 1, 1>()) );
  162. CALL_SUBTEST_2( matrixVisitor(Matrix2f()) );
  163. CALL_SUBTEST_3( matrixVisitor(Matrix4d()) );
  164. CALL_SUBTEST_4( matrixVisitor(MatrixXd(8, 12)) );
  165. CALL_SUBTEST_5( matrixVisitor(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 20)) );
  166. CALL_SUBTEST_6( matrixVisitor(MatrixXi(8, 12)) );
  167. }
  168. for(int i = 0; i < g_repeat; i++) {
  169. CALL_SUBTEST_7( vectorVisitor(Vector4f()) );
  170. CALL_SUBTEST_7( vectorVisitor(Matrix<int,12,1>()) );
  171. CALL_SUBTEST_8( vectorVisitor(VectorXd(10)) );
  172. CALL_SUBTEST_9( vectorVisitor(RowVectorXd(10)) );
  173. CALL_SUBTEST_10( vectorVisitor(VectorXf(33)) );
  174. }
  175. }