123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
- // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #define TEST_ENABLE_TEMPORARY_TRACKING
- #define EIGEN_NO_STATIC_ASSERT
- #include "main.h"
- template<typename ArrayType> void vectorwiseop_array(const ArrayType& m)
- {
- typedef typename ArrayType::Scalar Scalar;
- typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
- typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
- Index rows = m.rows();
- Index cols = m.cols();
- Index r = internal::random<Index>(0, rows-1),
- c = internal::random<Index>(0, cols-1);
- ArrayType m1 = ArrayType::Random(rows, cols),
- m2(rows, cols),
- m3(rows, cols);
- ColVectorType colvec = ColVectorType::Random(rows);
- RowVectorType rowvec = RowVectorType::Random(cols);
- // test addition
- m2 = m1;
- m2.colwise() += colvec;
- VERIFY_IS_APPROX(m2, m1.colwise() + colvec);
- VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec);
- VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose());
- VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose());
- m2 = m1;
- m2.rowwise() += rowvec;
- VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec);
- VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec);
- VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose());
- VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose());
- // test substraction
- m2 = m1;
- m2.colwise() -= colvec;
- VERIFY_IS_APPROX(m2, m1.colwise() - colvec);
- VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec);
- VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose());
- VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose());
- m2 = m1;
- m2.rowwise() -= rowvec;
- VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec);
- VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec);
- VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose());
- VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose());
- // test multiplication
- m2 = m1;
- m2.colwise() *= colvec;
- VERIFY_IS_APPROX(m2, m1.colwise() * colvec);
- VERIFY_IS_APPROX(m2.col(c), m1.col(c) * colvec);
- VERIFY_RAISES_ASSERT(m2.colwise() *= colvec.transpose());
- VERIFY_RAISES_ASSERT(m1.colwise() * colvec.transpose());
- m2 = m1;
- m2.rowwise() *= rowvec;
- VERIFY_IS_APPROX(m2, m1.rowwise() * rowvec);
- VERIFY_IS_APPROX(m2.row(r), m1.row(r) * rowvec);
- VERIFY_RAISES_ASSERT(m2.rowwise() *= rowvec.transpose());
- VERIFY_RAISES_ASSERT(m1.rowwise() * rowvec.transpose());
- // test quotient
- m2 = m1;
- m2.colwise() /= colvec;
- VERIFY_IS_APPROX(m2, m1.colwise() / colvec);
- VERIFY_IS_APPROX(m2.col(c), m1.col(c) / colvec);
- VERIFY_RAISES_ASSERT(m2.colwise() /= colvec.transpose());
- VERIFY_RAISES_ASSERT(m1.colwise() / colvec.transpose());
- m2 = m1;
- m2.rowwise() /= rowvec;
- VERIFY_IS_APPROX(m2, m1.rowwise() / rowvec);
- VERIFY_IS_APPROX(m2.row(r), m1.row(r) / rowvec);
- VERIFY_RAISES_ASSERT(m2.rowwise() /= rowvec.transpose());
- VERIFY_RAISES_ASSERT(m1.rowwise() / rowvec.transpose());
- m2 = m1;
- // yes, there might be an aliasing issue there but ".rowwise() /="
- // is supposed to evaluate " m2.colwise().sum()" into a temporary to avoid
- // evaluating the reduction multiple times
- if(ArrayType::RowsAtCompileTime>2 || ArrayType::RowsAtCompileTime==Dynamic)
- {
- m2.rowwise() /= m2.colwise().sum();
- VERIFY_IS_APPROX(m2, m1.rowwise() / m1.colwise().sum());
- }
- // all/any
- Array<bool,Dynamic,Dynamic> mb(rows,cols);
- mb = (m1.real()<=0.7).colwise().all();
- VERIFY( (mb.col(c) == (m1.real().col(c)<=0.7).all()).all() );
- mb = (m1.real()<=0.7).rowwise().all();
- VERIFY( (mb.row(r) == (m1.real().row(r)<=0.7).all()).all() );
- mb = (m1.real()>=0.7).colwise().any();
- VERIFY( (mb.col(c) == (m1.real().col(c)>=0.7).any()).all() );
- mb = (m1.real()>=0.7).rowwise().any();
- VERIFY( (mb.row(r) == (m1.real().row(r)>=0.7).any()).all() );
- }
- template<typename MatrixType> void vectorwiseop_matrix(const MatrixType& m)
- {
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
- typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
- typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealColVectorType;
- typedef Matrix<RealScalar, 1, MatrixType::ColsAtCompileTime> RealRowVectorType;
- typedef Matrix<Scalar,Dynamic,Dynamic> MatrixX;
- Index rows = m.rows();
- Index cols = m.cols();
- Index r = internal::random<Index>(0, rows-1),
- c = internal::random<Index>(0, cols-1);
- MatrixType m1 = MatrixType::Random(rows, cols),
- m2(rows, cols),
- m3(rows, cols);
- ColVectorType colvec = ColVectorType::Random(rows);
- RowVectorType rowvec = RowVectorType::Random(cols);
- RealColVectorType rcres;
- RealRowVectorType rrres;
- // test broadcast assignment
- m2 = m1;
- m2.colwise() = colvec;
- for(Index j=0; j<cols; ++j)
- VERIFY_IS_APPROX(m2.col(j), colvec);
- m2.rowwise() = rowvec;
- for(Index i=0; i<rows; ++i)
- VERIFY_IS_APPROX(m2.row(i), rowvec);
- if(rows>1)
- VERIFY_RAISES_ASSERT(m2.colwise() = colvec.transpose());
- if(cols>1)
- VERIFY_RAISES_ASSERT(m2.rowwise() = rowvec.transpose());
- // test addition
- m2 = m1;
- m2.colwise() += colvec;
- VERIFY_IS_APPROX(m2, m1.colwise() + colvec);
- VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec);
- if(rows>1)
- {
- VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose());
- VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose());
- }
- m2 = m1;
- m2.rowwise() += rowvec;
- VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec);
- VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec);
- if(cols>1)
- {
- VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose());
- VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose());
- }
- // test substraction
- m2 = m1;
- m2.colwise() -= colvec;
- VERIFY_IS_APPROX(m2, m1.colwise() - colvec);
- VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec);
- if(rows>1)
- {
- VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose());
- VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose());
- }
- m2 = m1;
- m2.rowwise() -= rowvec;
- VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec);
- VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec);
- if(cols>1)
- {
- VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose());
- VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose());
- }
- // ------ partial reductions ------
- #define TEST_PARTIAL_REDUX_BASIC(FUNC,ROW,COL,PREPROCESS) { \
- ROW = m1 PREPROCESS .colwise().FUNC ; \
- for(Index k=0; k<cols; ++k) VERIFY_IS_APPROX(ROW(k), m1.col(k) PREPROCESS .FUNC ); \
- COL = m1 PREPROCESS .rowwise().FUNC ; \
- for(Index k=0; k<rows; ++k) VERIFY_IS_APPROX(COL(k), m1.row(k) PREPROCESS .FUNC ); \
- }
- TEST_PARTIAL_REDUX_BASIC(sum(), rowvec,colvec,EIGEN_EMPTY);
- TEST_PARTIAL_REDUX_BASIC(prod(), rowvec,colvec,EIGEN_EMPTY);
- TEST_PARTIAL_REDUX_BASIC(mean(), rowvec,colvec,EIGEN_EMPTY);
- TEST_PARTIAL_REDUX_BASIC(minCoeff(), rrres, rcres, .real());
- TEST_PARTIAL_REDUX_BASIC(maxCoeff(), rrres, rcres, .real());
- TEST_PARTIAL_REDUX_BASIC(norm(), rrres, rcres, EIGEN_EMPTY);
- TEST_PARTIAL_REDUX_BASIC(squaredNorm(),rrres, rcres, EIGEN_EMPTY);
- TEST_PARTIAL_REDUX_BASIC(redux(internal::scalar_sum_op<Scalar,Scalar>()),rowvec,colvec,EIGEN_EMPTY);
- VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum(), m1.colwise().template lpNorm<1>());
- VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().sum(), m1.rowwise().template lpNorm<1>());
- VERIFY_IS_APPROX(m1.cwiseAbs().colwise().maxCoeff(), m1.colwise().template lpNorm<Infinity>());
- VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().maxCoeff(), m1.rowwise().template lpNorm<Infinity>());
- // regression for bug 1158
- VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum().x(), m1.col(0).cwiseAbs().sum());
- // test normalized
- m2 = m1.colwise().normalized();
- VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized());
- m2 = m1.rowwise().normalized();
- VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized());
- // test normalize
- m2 = m1;
- m2.colwise().normalize();
- VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized());
- m2 = m1;
- m2.rowwise().normalize();
- VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized());
- // test with partial reduction of products
- Matrix<Scalar,MatrixType::RowsAtCompileTime,MatrixType::RowsAtCompileTime> m1m1 = m1 * m1.transpose();
- VERIFY_IS_APPROX( (m1 * m1.transpose()).colwise().sum(), m1m1.colwise().sum());
- Matrix<Scalar,1,MatrixType::RowsAtCompileTime> tmp(rows);
- VERIFY_EVALUATION_COUNT( tmp = (m1 * m1.transpose()).colwise().sum(), 1);
- m2 = m1.rowwise() - (m1.colwise().sum()/RealScalar(m1.rows())).eval();
- m1 = m1.rowwise() - (m1.colwise().sum()/RealScalar(m1.rows()));
- VERIFY_IS_APPROX( m1, m2 );
- VERIFY_EVALUATION_COUNT( m2 = (m1.rowwise() - m1.colwise().sum()/RealScalar(m1.rows())), (MatrixType::RowsAtCompileTime!=1 ? 1 : 0) );
- // test empty expressions
- VERIFY_IS_APPROX(m1.matrix().middleCols(0,0).rowwise().sum().eval(), MatrixX::Zero(rows,1));
- VERIFY_IS_APPROX(m1.matrix().middleRows(0,0).colwise().sum().eval(), MatrixX::Zero(1,cols));
- VERIFY_IS_APPROX(m1.matrix().middleCols(0,fix<0>).rowwise().sum().eval(), MatrixX::Zero(rows,1));
- VERIFY_IS_APPROX(m1.matrix().middleRows(0,fix<0>).colwise().sum().eval(), MatrixX::Zero(1,cols));
- VERIFY_IS_APPROX(m1.matrix().middleCols(0,0).rowwise().prod().eval(), MatrixX::Ones(rows,1));
- VERIFY_IS_APPROX(m1.matrix().middleRows(0,0).colwise().prod().eval(), MatrixX::Ones(1,cols));
- VERIFY_IS_APPROX(m1.matrix().middleCols(0,fix<0>).rowwise().prod().eval(), MatrixX::Ones(rows,1));
- VERIFY_IS_APPROX(m1.matrix().middleRows(0,fix<0>).colwise().prod().eval(), MatrixX::Ones(1,cols));
-
- VERIFY_IS_APPROX(m1.matrix().middleCols(0,0).rowwise().squaredNorm().eval(), MatrixX::Zero(rows,1));
- VERIFY_RAISES_ASSERT(m1.real().middleCols(0,0).rowwise().minCoeff().eval());
- VERIFY_RAISES_ASSERT(m1.real().middleRows(0,0).colwise().maxCoeff().eval());
- VERIFY_IS_EQUAL(m1.real().middleRows(0,0).rowwise().maxCoeff().eval().rows(),0);
- VERIFY_IS_EQUAL(m1.real().middleCols(0,0).colwise().maxCoeff().eval().cols(),0);
- VERIFY_IS_EQUAL(m1.real().middleRows(0,fix<0>).rowwise().maxCoeff().eval().rows(),0);
- VERIFY_IS_EQUAL(m1.real().middleCols(0,fix<0>).colwise().maxCoeff().eval().cols(),0);
- }
- EIGEN_DECLARE_TEST(vectorwiseop)
- {
- CALL_SUBTEST_1( vectorwiseop_array(Array22cd()) );
- CALL_SUBTEST_2( vectorwiseop_array(Array<double, 3, 2>()) );
- CALL_SUBTEST_3( vectorwiseop_array(ArrayXXf(3, 4)) );
- CALL_SUBTEST_4( vectorwiseop_matrix(Matrix4cf()) );
- CALL_SUBTEST_5( vectorwiseop_matrix(Matrix4f()) );
- CALL_SUBTEST_5( vectorwiseop_matrix(Vector4f()) );
- CALL_SUBTEST_5( vectorwiseop_matrix(Matrix<float,4,5>()) );
- CALL_SUBTEST_6( vectorwiseop_matrix(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- CALL_SUBTEST_7( vectorwiseop_matrix(VectorXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- CALL_SUBTEST_7( vectorwiseop_matrix(RowVectorXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- }
|