123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <Eigen/Core>
- #include <Eigen/Geometry>
- #include <Eigen/LU> // required for MatrixBase::determinant
- #include <Eigen/SVD> // required for SVD
- using namespace Eigen;
- // Constructs a random matrix from the unitary group U(size).
- template <typename T>
- Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixUnitary(int size)
- {
- typedef T Scalar;
- typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType;
- MatrixType Q;
- int max_tries = 40;
- bool is_unitary = false;
- while (!is_unitary && max_tries > 0)
- {
- // initialize random matrix
- Q = MatrixType::Random(size, size);
- // orthogonalize columns using the Gram-Schmidt algorithm
- for (int col = 0; col < size; ++col)
- {
- typename MatrixType::ColXpr colVec = Q.col(col);
- for (int prevCol = 0; prevCol < col; ++prevCol)
- {
- typename MatrixType::ColXpr prevColVec = Q.col(prevCol);
- colVec -= colVec.dot(prevColVec)*prevColVec;
- }
- Q.col(col) = colVec.normalized();
- }
- // this additional orthogonalization is not necessary in theory but should enhance
- // the numerical orthogonality of the matrix
- for (int row = 0; row < size; ++row)
- {
- typename MatrixType::RowXpr rowVec = Q.row(row);
- for (int prevRow = 0; prevRow < row; ++prevRow)
- {
- typename MatrixType::RowXpr prevRowVec = Q.row(prevRow);
- rowVec -= rowVec.dot(prevRowVec)*prevRowVec;
- }
- Q.row(row) = rowVec.normalized();
- }
- // final check
- is_unitary = Q.isUnitary();
- --max_tries;
- }
- if (max_tries == 0)
- eigen_assert(false && "randMatrixUnitary: Could not construct unitary matrix!");
- return Q;
- }
- // Constructs a random matrix from the special unitary group SU(size).
- template <typename T>
- Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixSpecialUnitary(int size)
- {
- typedef T Scalar;
- typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType;
- // initialize unitary matrix
- MatrixType Q = randMatrixUnitary<Scalar>(size);
- // tweak the first column to make the determinant be 1
- Q.col(0) *= numext::conj(Q.determinant());
- return Q;
- }
- template <typename MatrixType>
- void run_test(int dim, int num_elements)
- {
- using std::abs;
- typedef typename internal::traits<MatrixType>::Scalar Scalar;
- typedef Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixX;
- typedef Matrix<Scalar, Eigen::Dynamic, 1> VectorX;
- // MUST be positive because in any other case det(cR_t) may become negative for
- // odd dimensions!
- const Scalar c = abs(internal::random<Scalar>());
- MatrixX R = randMatrixSpecialUnitary<Scalar>(dim);
- VectorX t = Scalar(50)*VectorX::Random(dim,1);
- MatrixX cR_t = MatrixX::Identity(dim+1,dim+1);
- cR_t.block(0,0,dim,dim) = c*R;
- cR_t.block(0,dim,dim,1) = t;
- MatrixX src = MatrixX::Random(dim+1, num_elements);
- src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1));
- MatrixX dst = cR_t*src;
- MatrixX cR_t_umeyama = umeyama(src.block(0,0,dim,num_elements), dst.block(0,0,dim,num_elements));
- const Scalar error = ( cR_t_umeyama*src - dst ).norm() / dst.norm();
- VERIFY(error < Scalar(40)*std::numeric_limits<Scalar>::epsilon());
- }
- template<typename Scalar, int Dimension>
- void run_fixed_size_test(int num_elements)
- {
- using std::abs;
- typedef Matrix<Scalar, Dimension+1, Dynamic> MatrixX;
- typedef Matrix<Scalar, Dimension+1, Dimension+1> HomMatrix;
- typedef Matrix<Scalar, Dimension, Dimension> FixedMatrix;
- typedef Matrix<Scalar, Dimension, 1> FixedVector;
- const int dim = Dimension;
- // MUST be positive because in any other case det(cR_t) may become negative for
- // odd dimensions!
- // Also if c is to small compared to t.norm(), problem is ill-posed (cf. Bug 744)
- const Scalar c = internal::random<Scalar>(0.5, 2.0);
- FixedMatrix R = randMatrixSpecialUnitary<Scalar>(dim);
- FixedVector t = Scalar(32)*FixedVector::Random(dim,1);
- HomMatrix cR_t = HomMatrix::Identity(dim+1,dim+1);
- cR_t.block(0,0,dim,dim) = c*R;
- cR_t.block(0,dim,dim,1) = t;
- MatrixX src = MatrixX::Random(dim+1, num_elements);
- src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1));
- MatrixX dst = cR_t*src;
- Block<MatrixX, Dimension, Dynamic> src_block(src,0,0,dim,num_elements);
- Block<MatrixX, Dimension, Dynamic> dst_block(dst,0,0,dim,num_elements);
- HomMatrix cR_t_umeyama = umeyama(src_block, dst_block);
- const Scalar error = ( cR_t_umeyama*src - dst ).squaredNorm();
- VERIFY(error < Scalar(16)*std::numeric_limits<Scalar>::epsilon());
- }
- EIGEN_DECLARE_TEST(umeyama)
- {
- for (int i=0; i<g_repeat; ++i)
- {
- const int num_elements = internal::random<int>(40,500);
- // works also for dimensions bigger than 3...
- for (int dim=2; dim<8; ++dim)
- {
- CALL_SUBTEST_1(run_test<MatrixXd>(dim, num_elements));
- CALL_SUBTEST_2(run_test<MatrixXf>(dim, num_elements));
- }
- CALL_SUBTEST_3((run_fixed_size_test<float, 2>(num_elements)));
- CALL_SUBTEST_4((run_fixed_size_test<float, 3>(num_elements)));
- CALL_SUBTEST_5((run_fixed_size_test<float, 4>(num_elements)));
- CALL_SUBTEST_6((run_fixed_size_test<double, 2>(num_elements)));
- CALL_SUBTEST_7((run_fixed_size_test<double, 3>(num_elements)));
- CALL_SUBTEST_8((run_fixed_size_test<double, 4>(num_elements)));
- }
- // Those two calls don't compile and result in meaningful error messages!
- // umeyama(MatrixXcf(),MatrixXcf());
- // umeyama(MatrixXcd(),MatrixXcd());
- }
|