123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
- // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #ifndef SVD_DEFAULT
- #error a macro SVD_DEFAULT(MatrixType) must be defined prior to including svd_common.h
- #endif
- #ifndef SVD_FOR_MIN_NORM
- #error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h
- #endif
- #include "svd_fill.h"
- #include "solverbase.h"
- // Check that the matrix m is properly reconstructed and that the U and V factors are unitary
- // The SVD must have already been computed.
- template<typename SvdType, typename MatrixType>
- void svd_check_full(const MatrixType& m, const SvdType& svd)
- {
- Index rows = m.rows();
- Index cols = m.cols();
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
- typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
- MatrixType sigma = MatrixType::Zero(rows,cols);
- sigma.diagonal() = svd.singularValues().template cast<Scalar>();
- MatrixUType u = svd.matrixU();
- MatrixVType v = svd.matrixV();
- RealScalar scaling = m.cwiseAbs().maxCoeff();
- if(scaling<(std::numeric_limits<RealScalar>::min)())
- {
- VERIFY(sigma.cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)());
- }
- else
- {
- VERIFY_IS_APPROX(m/scaling, u * (sigma/scaling) * v.adjoint());
- }
- VERIFY_IS_UNITARY(u);
- VERIFY_IS_UNITARY(v);
- }
- // Compare partial SVD defined by computationOptions to a full SVD referenceSvd
- template<typename SvdType, typename MatrixType>
- void svd_compare_to_full(const MatrixType& m,
- unsigned int computationOptions,
- const SvdType& referenceSvd)
- {
- typedef typename MatrixType::RealScalar RealScalar;
- Index rows = m.rows();
- Index cols = m.cols();
- Index diagSize = (std::min)(rows, cols);
- RealScalar prec = test_precision<RealScalar>();
- SvdType svd(m, computationOptions);
- VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
-
- if(computationOptions & (ComputeFullV|ComputeThinV))
- {
- VERIFY( (svd.matrixV().adjoint()*svd.matrixV()).isIdentity(prec) );
- VERIFY_IS_APPROX( svd.matrixV().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint(),
- referenceSvd.matrixV().leftCols(diagSize) * referenceSvd.singularValues().asDiagonal() * referenceSvd.matrixV().leftCols(diagSize).adjoint());
- }
-
- if(computationOptions & (ComputeFullU|ComputeThinU))
- {
- VERIFY( (svd.matrixU().adjoint()*svd.matrixU()).isIdentity(prec) );
- VERIFY_IS_APPROX( svd.matrixU().leftCols(diagSize) * svd.singularValues().cwiseAbs2().asDiagonal() * svd.matrixU().leftCols(diagSize).adjoint(),
- referenceSvd.matrixU().leftCols(diagSize) * referenceSvd.singularValues().cwiseAbs2().asDiagonal() * referenceSvd.matrixU().leftCols(diagSize).adjoint());
- }
-
- // The following checks are not critical.
- // For instance, with Dived&Conquer SVD, if only the factor 'V' is computedt then different matrix-matrix product implementation will be used
- // and the resulting 'V' factor might be significantly different when the SVD decomposition is not unique, especially with single precision float.
- ++g_test_level;
- if(computationOptions & ComputeFullU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
- if(computationOptions & ComputeThinU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
- if(computationOptions & ComputeFullV) VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs());
- if(computationOptions & ComputeThinV) VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
- --g_test_level;
- }
- //
- template<typename SvdType, typename MatrixType>
- void svd_least_square(const MatrixType& m, unsigned int computationOptions)
- {
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- Index rows = m.rows();
- Index cols = m.cols();
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime
- };
- typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
- typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
- RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
- SvdType svd(m, computationOptions);
- if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8);
- else if(internal::is_same<RealScalar,float>::value) svd.setThreshold(2e-4);
- SolutionType x = svd.solve(rhs);
-
- RealScalar residual = (m*x-rhs).norm();
- RealScalar rhs_norm = rhs.norm();
- if(!test_isMuchSmallerThan(residual,rhs.norm()))
- {
- // ^^^ If the residual is very small, then we have an exact solution, so we are already good.
-
- // evaluate normal equation which works also for least-squares solutions
- if(internal::is_same<RealScalar,double>::value || svd.rank()==m.diagonal().size())
- {
- using std::sqrt;
- // This test is not stable with single precision.
- // This is probably because squaring m signicantly affects the precision.
- if(internal::is_same<RealScalar,float>::value) ++g_test_level;
-
- VERIFY_IS_APPROX(m.adjoint()*(m*x),m.adjoint()*rhs);
-
- if(internal::is_same<RealScalar,float>::value) --g_test_level;
- }
-
- // Check that there is no significantly better solution in the neighborhood of x
- for(Index k=0;k<x.rows();++k)
- {
- using std::abs;
-
- SolutionType y(x);
- y.row(k) = (RealScalar(1)+2*NumTraits<RealScalar>::epsilon())*x.row(k);
- RealScalar residual_y = (m*y-rhs).norm();
- VERIFY( test_isMuchSmallerThan(abs(residual_y-residual), rhs_norm) || residual < residual_y );
- if(internal::is_same<RealScalar,float>::value) ++g_test_level;
- VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
- if(internal::is_same<RealScalar,float>::value) --g_test_level;
-
- y.row(k) = (RealScalar(1)-2*NumTraits<RealScalar>::epsilon())*x.row(k);
- residual_y = (m*y-rhs).norm();
- VERIFY( test_isMuchSmallerThan(abs(residual_y-residual), rhs_norm) || residual < residual_y );
- if(internal::is_same<RealScalar,float>::value) ++g_test_level;
- VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
- if(internal::is_same<RealScalar,float>::value) --g_test_level;
- }
- }
- }
- // check minimal norm solutions, the inoput matrix m is only used to recover problem size
- template<typename MatrixType>
- void svd_min_norm(const MatrixType& m, unsigned int computationOptions)
- {
- typedef typename MatrixType::Scalar Scalar;
- Index cols = m.cols();
- enum {
- ColsAtCompileTime = MatrixType::ColsAtCompileTime
- };
- typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
- // generate a full-rank m x n problem with m<n
- enum {
- RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1,
- RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1
- };
- typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2;
- typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2;
- typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T;
- Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2);
- MatrixType2 m2(rank,cols);
- int guard = 0;
- do {
- m2.setRandom();
- } while(SVD_FOR_MIN_NORM(MatrixType2)(m2).setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10);
- VERIFY(guard<10);
- RhsType2 rhs2 = RhsType2::Random(rank);
- // use QR to find a reference minimal norm solution
- HouseholderQR<MatrixType2T> qr(m2.adjoint());
- Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2);
- tmp.conservativeResize(cols);
- tmp.tail(cols-rank).setZero();
- SolutionType x21 = qr.householderQ() * tmp;
- // now check with SVD
- SVD_FOR_MIN_NORM(MatrixType2) svd2(m2, computationOptions);
- SolutionType x22 = svd2.solve(rhs2);
- VERIFY_IS_APPROX(m2*x21, rhs2);
- VERIFY_IS_APPROX(m2*x22, rhs2);
- VERIFY_IS_APPROX(x21, x22);
- // Now check with a rank deficient matrix
- typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3;
- typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3;
- Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3);
- Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank);
- MatrixType3 m3 = C * m2;
- RhsType3 rhs3 = C * rhs2;
- SVD_FOR_MIN_NORM(MatrixType3) svd3(m3, computationOptions);
- SolutionType x3 = svd3.solve(rhs3);
- VERIFY_IS_APPROX(m3*x3, rhs3);
- VERIFY_IS_APPROX(m3*x21, rhs3);
- VERIFY_IS_APPROX(m2*x3, rhs2);
- VERIFY_IS_APPROX(x21, x3);
- }
- template<typename MatrixType, typename SolverType>
- void svd_test_solvers(const MatrixType& m, const SolverType& solver) {
- Index rows, cols, cols2;
- rows = m.rows();
- cols = m.cols();
- if(MatrixType::ColsAtCompileTime==Dynamic)
- {
- cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE);
- }
- else
- {
- cols2 = cols;
- }
- typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> CMatrixType;
- check_solverbase<CMatrixType, MatrixType>(m, solver, rows, cols, cols2);
- }
- // Check full, compare_to_full, least_square, and min_norm for all possible compute-options
- template<typename SvdType, typename MatrixType>
- void svd_test_all_computation_options(const MatrixType& m, bool full_only)
- {
- // if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
- // return;
- STATIC_CHECK(( internal::is_same<typename SvdType::StorageIndex,int>::value ));
- SvdType fullSvd(m, ComputeFullU|ComputeFullV);
- CALL_SUBTEST(( svd_check_full(m, fullSvd) ));
- CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeFullV) ));
- CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeFullV) ));
-
- #if defined __INTEL_COMPILER
- // remark #111: statement is unreachable
- #pragma warning disable 111
- #endif
- svd_test_solvers(m, fullSvd);
- if(full_only)
- return;
- CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU, fullSvd) ));
- CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullV, fullSvd) ));
- CALL_SUBTEST(( svd_compare_to_full(m, 0, fullSvd) ));
- if (MatrixType::ColsAtCompileTime == Dynamic) {
- // thin U/V are only available with dynamic number of columns
- CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) ));
- CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinV, fullSvd) ));
- CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) ));
- CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU , fullSvd) ));
- CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) ));
-
- CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeThinV) ));
- CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeFullV) ));
- CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeThinV) ));
- CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeThinV) ));
- CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeFullV) ));
- CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeThinV) ));
- // test reconstruction
- Index diagSize = (std::min)(m.rows(), m.cols());
- SvdType svd(m, ComputeThinU | ComputeThinV);
- VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
- }
- }
- // work around stupid msvc error when constructing at compile time an expression that involves
- // a division by zero, even if the numeric type has floating point
- template<typename Scalar>
- EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
- // workaround aggressive optimization in ICC
- template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
- // This function verifies we don't iterate infinitely on nan/inf values,
- // and that info() returns InvalidInput.
- template<typename SvdType, typename MatrixType>
- void svd_inf_nan()
- {
- SvdType svd;
- typedef typename MatrixType::Scalar Scalar;
- Scalar some_inf = Scalar(1) / zero<Scalar>();
- VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
- svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
- VERIFY(svd.info() == InvalidInput);
- Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
- VERIFY(nan != nan);
- svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV);
- VERIFY(svd.info() == InvalidInput);
- MatrixType m = MatrixType::Zero(10,10);
- m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
- svd.compute(m, ComputeFullU | ComputeFullV);
- VERIFY(svd.info() == InvalidInput);
- m = MatrixType::Zero(10,10);
- m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan;
- svd.compute(m, ComputeFullU | ComputeFullV);
- VERIFY(svd.info() == InvalidInput);
-
- // regression test for bug 791
- m.resize(3,3);
- m << 0, 2*NumTraits<Scalar>::epsilon(), 0.5,
- 0, -0.5, 0,
- nan, 0, 0;
- svd.compute(m, ComputeFullU | ComputeFullV);
- VERIFY(svd.info() == InvalidInput);
-
- m.resize(4,4);
- m << 1, 0, 0, 0,
- 0, 3, 1, 2e-308,
- 1, 0, 1, nan,
- 0, nan, nan, 0;
- svd.compute(m, ComputeFullU | ComputeFullV);
- VERIFY(svd.info() == InvalidInput);
- }
- // Regression test for bug 286: JacobiSVD loops indefinitely with some
- // matrices containing denormal numbers.
- template<typename>
- void svd_underoverflow()
- {
- #if defined __INTEL_COMPILER
- // shut up warning #239: floating point underflow
- #pragma warning push
- #pragma warning disable 239
- #endif
- Matrix2d M;
- M << -7.90884e-313, -4.94e-324,
- 0, 5.60844e-313;
- SVD_DEFAULT(Matrix2d) svd;
- svd.compute(M,ComputeFullU|ComputeFullV);
- CALL_SUBTEST( svd_check_full(M,svd) );
-
- // Check all 2x2 matrices made with the following coefficients:
- VectorXd value_set(9);
- value_set << 0, 1, -1, 5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324, -4.94e-223, 4.94e-223;
- Array4i id(0,0,0,0);
- int k = 0;
- do
- {
- M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
- svd.compute(M,ComputeFullU|ComputeFullV);
- CALL_SUBTEST( svd_check_full(M,svd) );
- id(k)++;
- if(id(k)>=value_set.size())
- {
- while(k<3 && id(k)>=value_set.size()) id(++k)++;
- id.head(k).setZero();
- k=0;
- }
- } while((id<int(value_set.size())).all());
-
- #if defined __INTEL_COMPILER
- #pragma warning pop
- #endif
-
- // Check for overflow:
- Matrix3d M3;
- M3 << 4.4331978442502944e+307, -5.8585363752028680e+307, 6.4527017443412964e+307,
- 3.7841695601406358e+307, 2.4331702789740617e+306, -3.5235707140272905e+307,
- -8.7190887618028355e+307, -7.3453213709232193e+307, -2.4367363684472105e+307;
- SVD_DEFAULT(Matrix3d) svd3;
- svd3.compute(M3,ComputeFullU|ComputeFullV); // just check we don't loop indefinitely
- CALL_SUBTEST( svd_check_full(M3,svd3) );
- }
- // void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
- template<typename MatrixType>
- void svd_all_trivial_2x2( void (*cb)(const MatrixType&,bool) )
- {
- MatrixType M;
- VectorXd value_set(3);
- value_set << 0, 1, -1;
- Array4i id(0,0,0,0);
- int k = 0;
- do
- {
- M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
-
- cb(M,false);
-
- id(k)++;
- if(id(k)>=value_set.size())
- {
- while(k<3 && id(k)>=value_set.size()) id(++k)++;
- id.head(k).setZero();
- k=0;
- }
-
- } while((id<int(value_set.size())).all());
- }
- template<typename>
- void svd_preallocate()
- {
- Vector3f v(3.f, 2.f, 1.f);
- MatrixXf m = v.asDiagonal();
- internal::set_is_malloc_allowed(false);
- VERIFY_RAISES_ASSERT(VectorXf tmp(10);)
- SVD_DEFAULT(MatrixXf) svd;
- internal::set_is_malloc_allowed(true);
- svd.compute(m);
- VERIFY_IS_APPROX(svd.singularValues(), v);
- SVD_DEFAULT(MatrixXf) svd2(3,3);
- internal::set_is_malloc_allowed(false);
- svd2.compute(m);
- internal::set_is_malloc_allowed(true);
- VERIFY_IS_APPROX(svd2.singularValues(), v);
- VERIFY_RAISES_ASSERT(svd2.matrixU());
- VERIFY_RAISES_ASSERT(svd2.matrixV());
- svd2.compute(m, ComputeFullU | ComputeFullV);
- VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
- VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
- internal::set_is_malloc_allowed(false);
- svd2.compute(m);
- internal::set_is_malloc_allowed(true);
- SVD_DEFAULT(MatrixXf) svd3(3,3,ComputeFullU|ComputeFullV);
- internal::set_is_malloc_allowed(false);
- svd2.compute(m);
- internal::set_is_malloc_allowed(true);
- VERIFY_IS_APPROX(svd2.singularValues(), v);
- VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
- VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
- internal::set_is_malloc_allowed(false);
- svd2.compute(m, ComputeFullU|ComputeFullV);
- internal::set_is_malloc_allowed(true);
- }
- template<typename SvdType,typename MatrixType>
- void svd_verify_assert(const MatrixType& m, bool fullOnly = false)
- {
- typedef typename MatrixType::Scalar Scalar;
- Index rows = m.rows();
- Index cols = m.cols();
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime
- };
- typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
- RhsType rhs(rows);
- SvdType svd;
- VERIFY_RAISES_ASSERT(svd.matrixU())
- VERIFY_RAISES_ASSERT(svd.singularValues())
- VERIFY_RAISES_ASSERT(svd.matrixV())
- VERIFY_RAISES_ASSERT(svd.solve(rhs))
- VERIFY_RAISES_ASSERT(svd.transpose().solve(rhs))
- VERIFY_RAISES_ASSERT(svd.adjoint().solve(rhs))
- MatrixType a = MatrixType::Zero(rows, cols);
- a.setZero();
- svd.compute(a, 0);
- VERIFY_RAISES_ASSERT(svd.matrixU())
- VERIFY_RAISES_ASSERT(svd.matrixV())
- svd.singularValues();
- VERIFY_RAISES_ASSERT(svd.solve(rhs))
- svd.compute(a, ComputeFullU);
- svd.matrixU();
- VERIFY_RAISES_ASSERT(svd.matrixV())
- VERIFY_RAISES_ASSERT(svd.solve(rhs))
- svd.compute(a, ComputeFullV);
- svd.matrixV();
- VERIFY_RAISES_ASSERT(svd.matrixU())
- VERIFY_RAISES_ASSERT(svd.solve(rhs))
- if (!fullOnly && ColsAtCompileTime == Dynamic)
- {
- svd.compute(a, ComputeThinU);
- svd.matrixU();
- VERIFY_RAISES_ASSERT(svd.matrixV())
- VERIFY_RAISES_ASSERT(svd.solve(rhs))
- svd.compute(a, ComputeThinV);
- svd.matrixV();
- VERIFY_RAISES_ASSERT(svd.matrixU())
- VERIFY_RAISES_ASSERT(svd.solve(rhs))
- }
- else
- {
- VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
- VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
- }
- }
- #undef SVD_DEFAULT
- #undef SVD_FOR_MIN_NORM
|