123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "sparse.h"
- #include "AnnoyingScalar.h"
- template<typename T>
- typename Eigen::internal::enable_if<(T::Flags&RowMajorBit)==RowMajorBit, typename T::RowXpr>::type
- innervec(T& A, Index i)
- {
- return A.row(i);
- }
- template<typename T>
- typename Eigen::internal::enable_if<(T::Flags&RowMajorBit)==0, typename T::ColXpr>::type
- innervec(T& A, Index i)
- {
- return A.col(i);
- }
- template<typename SparseMatrixType> void sparse_block(const SparseMatrixType& ref)
- {
- const Index rows = ref.rows();
- const Index cols = ref.cols();
- const Index inner = ref.innerSize();
- const Index outer = ref.outerSize();
- typedef typename SparseMatrixType::Scalar Scalar;
- typedef typename SparseMatrixType::RealScalar RealScalar;
- typedef typename SparseMatrixType::StorageIndex StorageIndex;
- double density = (std::max)(8./(rows*cols), 0.01);
- typedef Matrix<Scalar,Dynamic,Dynamic,SparseMatrixType::IsRowMajor?RowMajor:ColMajor> DenseMatrix;
- typedef Matrix<Scalar,Dynamic,1> DenseVector;
- typedef Matrix<Scalar,1,Dynamic> RowDenseVector;
- typedef SparseVector<Scalar> SparseVectorType;
- Scalar s1 = internal::random<Scalar>();
- {
- SparseMatrixType m(rows, cols);
- DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
- initSparse<Scalar>(density, refMat, m);
- VERIFY_IS_APPROX(m, refMat);
- // test InnerIterators and Block expressions
- for (int t=0; t<10; ++t)
- {
- Index j = internal::random<Index>(0,cols-2);
- Index i = internal::random<Index>(0,rows-2);
- Index w = internal::random<Index>(1,cols-j);
- Index h = internal::random<Index>(1,rows-i);
- VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
- for(Index c=0; c<w; c++)
- {
- VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
- for(Index r=0; r<h; r++)
- {
- VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
- VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c));
- }
- }
- for(Index r=0; r<h; r++)
- {
- VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
- for(Index c=0; c<w; c++)
- {
- VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
- VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c));
- }
- }
-
- VERIFY_IS_APPROX(m.middleCols(j,w), refMat.middleCols(j,w));
- VERIFY_IS_APPROX(m.middleRows(i,h), refMat.middleRows(i,h));
- for(Index r=0; r<h; r++)
- {
- VERIFY_IS_APPROX(m.middleCols(j,w).row(r), refMat.middleCols(j,w).row(r));
- VERIFY_IS_APPROX(m.middleRows(i,h).row(r), refMat.middleRows(i,h).row(r));
- for(Index c=0; c<w; c++)
- {
- VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r));
- VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c));
-
- VERIFY_IS_APPROX(m.middleCols(j,w).coeff(r,c), refMat.middleCols(j,w).coeff(r,c));
- VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
- if(m.middleCols(j,w).coeff(r,c) != Scalar(0))
- {
- VERIFY_IS_APPROX(m.middleCols(j,w).coeffRef(r,c), refMat.middleCols(j,w).coeff(r,c));
- }
- if(m.middleRows(i,h).coeff(r,c) != Scalar(0))
- {
- VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
- }
- }
- }
- for(Index c=0; c<w; c++)
- {
- VERIFY_IS_APPROX(m.middleCols(j,w).col(c), refMat.middleCols(j,w).col(c));
- VERIFY_IS_APPROX(m.middleRows(i,h).col(c), refMat.middleRows(i,h).col(c));
- }
- }
- for(Index c=0; c<cols; c++)
- {
- VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
- VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
- }
- for(Index r=0; r<rows; r++)
- {
- VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
- VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
- }
- }
- // test innerVector()
- {
- DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
- SparseMatrixType m2(rows, cols);
- initSparse<Scalar>(density, refMat2, m2);
- Index j0 = internal::random<Index>(0,outer-1);
- Index j1 = internal::random<Index>(0,outer-1);
- Index r0 = internal::random<Index>(0,rows-1);
- Index c0 = internal::random<Index>(0,cols-1);
- VERIFY_IS_APPROX(m2.innerVector(j0), innervec(refMat2,j0));
- VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), innervec(refMat2,j0)+innervec(refMat2,j1));
- m2.innerVector(j0) *= Scalar(2);
- innervec(refMat2,j0) *= Scalar(2);
- VERIFY_IS_APPROX(m2, refMat2);
- m2.row(r0) *= Scalar(3);
- refMat2.row(r0) *= Scalar(3);
- VERIFY_IS_APPROX(m2, refMat2);
- m2.col(c0) *= Scalar(4);
- refMat2.col(c0) *= Scalar(4);
- VERIFY_IS_APPROX(m2, refMat2);
- m2.row(r0) /= Scalar(3);
- refMat2.row(r0) /= Scalar(3);
- VERIFY_IS_APPROX(m2, refMat2);
- m2.col(c0) /= Scalar(4);
- refMat2.col(c0) /= Scalar(4);
- VERIFY_IS_APPROX(m2, refMat2);
- SparseVectorType v1;
- VERIFY_IS_APPROX(v1 = m2.col(c0) * 4, refMat2.col(c0)*4);
- VERIFY_IS_APPROX(v1 = m2.row(r0) * 4, refMat2.row(r0).transpose()*4);
- SparseMatrixType m3(rows,cols);
- m3.reserve(VectorXi::Constant(outer,int(inner/2)));
- for(Index j=0; j<outer; ++j)
- for(Index k=0; k<(std::min)(j,inner); ++k)
- m3.insertByOuterInner(j,k) = internal::convert_index<StorageIndex>(k+1);
- for(Index j=0; j<(std::min)(outer, inner); ++j)
- {
- VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
- if(j>0)
- VERIFY(RealScalar(j)==numext::real(m3.innerVector(j).lastCoeff()));
- }
- m3.makeCompressed();
- for(Index j=0; j<(std::min)(outer, inner); ++j)
- {
- VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
- if(j>0)
- VERIFY(RealScalar(j)==numext::real(m3.innerVector(j).lastCoeff()));
- }
- VERIFY(m3.innerVector(j0).nonZeros() == m3.transpose().innerVector(j0).nonZeros());
- // m2.innerVector(j0) = 2*m2.innerVector(j1);
- // refMat2.col(j0) = 2*refMat2.col(j1);
- // VERIFY_IS_APPROX(m2, refMat2);
- }
- // test innerVectors()
- {
- DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
- SparseMatrixType m2(rows, cols);
- initSparse<Scalar>(density, refMat2, m2);
- if(internal::random<float>(0,1)>0.5f) m2.makeCompressed();
- Index j0 = internal::random<Index>(0,outer-2);
- Index j1 = internal::random<Index>(0,outer-2);
- Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1));
- if(SparseMatrixType::IsRowMajor)
- VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols));
- else
- VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
- if(SparseMatrixType::IsRowMajor)
- VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
- refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0));
- else
- VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
- refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
-
- VERIFY_IS_APPROX(m2, refMat2);
-
- VERIFY(m2.innerVectors(j0,n0).nonZeros() == m2.transpose().innerVectors(j0,n0).nonZeros());
-
- m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
- if(SparseMatrixType::IsRowMajor)
- refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval();
- else
- refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval();
-
- VERIFY_IS_APPROX(m2, refMat2);
- }
- // test generic blocks
- {
- DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
- SparseMatrixType m2(rows, cols);
- initSparse<Scalar>(density, refMat2, m2);
- Index j0 = internal::random<Index>(0,outer-2);
- Index j1 = internal::random<Index>(0,outer-2);
- Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1));
- if(SparseMatrixType::IsRowMajor)
- VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols));
- else
- VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0));
-
- if(SparseMatrixType::IsRowMajor)
- VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols),
- refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols));
- else
- VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0),
- refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
-
- Index i = internal::random<Index>(0,m2.outerSize()-1);
- if(SparseMatrixType::IsRowMajor) {
- m2.innerVector(i) = m2.innerVector(i) * s1;
- refMat2.row(i) = refMat2.row(i) * s1;
- VERIFY_IS_APPROX(m2,refMat2);
- } else {
- m2.innerVector(i) = m2.innerVector(i) * s1;
- refMat2.col(i) = refMat2.col(i) * s1;
- VERIFY_IS_APPROX(m2,refMat2);
- }
-
- Index r0 = internal::random<Index>(0,rows-2);
- Index c0 = internal::random<Index>(0,cols-2);
- Index r1 = internal::random<Index>(1,rows-r0);
- Index c1 = internal::random<Index>(1,cols-c0);
-
- VERIFY_IS_APPROX(DenseVector(m2.col(c0)), refMat2.col(c0));
- VERIFY_IS_APPROX(m2.col(c0), refMat2.col(c0));
-
- VERIFY_IS_APPROX(RowDenseVector(m2.row(r0)), refMat2.row(r0));
- VERIFY_IS_APPROX(m2.row(r0), refMat2.row(r0));
- VERIFY_IS_APPROX(m2.block(r0,c0,r1,c1), refMat2.block(r0,c0,r1,c1));
- VERIFY_IS_APPROX((2*m2).block(r0,c0,r1,c1), (2*refMat2).block(r0,c0,r1,c1));
- if(m2.nonZeros()>0)
- {
- VERIFY_IS_APPROX(m2, refMat2);
- SparseMatrixType m3(rows, cols);
- DenseMatrix refMat3(rows, cols); refMat3.setZero();
- Index n = internal::random<Index>(1,10);
- for(Index k=0; k<n; ++k)
- {
- Index o1 = internal::random<Index>(0,outer-1);
- Index o2 = internal::random<Index>(0,outer-1);
- if(SparseMatrixType::IsRowMajor)
- {
- m3.innerVector(o1) = m2.row(o2);
- refMat3.row(o1) = refMat2.row(o2);
- }
- else
- {
- m3.innerVector(o1) = m2.col(o2);
- refMat3.col(o1) = refMat2.col(o2);
- }
- if(internal::random<bool>())
- m3.makeCompressed();
- }
- if(m3.nonZeros()>0)
- VERIFY_IS_APPROX(m3, refMat3);
- }
- }
- }
- EIGEN_DECLARE_TEST(sparse_block)
- {
- for(int i = 0; i < g_repeat; i++) {
- int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
- if(Eigen::internal::random<int>(0,4) == 0) {
- r = c; // check square matrices in 25% of tries
- }
- EIGEN_UNUSED_VARIABLE(r+c);
- CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(1, 1)) ));
- CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(8, 8)) ));
- CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(r, c)) ));
- CALL_SUBTEST_2(( sparse_block(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
- CALL_SUBTEST_2(( sparse_block(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
-
- CALL_SUBTEST_3(( sparse_block(SparseMatrix<double,ColMajor,long int>(r, c)) ));
- CALL_SUBTEST_3(( sparse_block(SparseMatrix<double,RowMajor,long int>(r, c)) ));
-
- r = Eigen::internal::random<int>(1,100);
- c = Eigen::internal::random<int>(1,100);
- if(Eigen::internal::random<int>(0,4) == 0) {
- r = c; // check square matrices in 25% of tries
- }
-
- CALL_SUBTEST_4(( sparse_block(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
- CALL_SUBTEST_4(( sparse_block(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
- #ifndef EIGEN_TEST_ANNOYING_SCALAR_DONT_THROW
- AnnoyingScalar::dont_throw = true;
- #endif
- CALL_SUBTEST_5(( sparse_block(SparseMatrix<AnnoyingScalar>(r,c)) ));
- }
- }
|