123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
- // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
- // Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA
- static long g_realloc_count = 0;
- #define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++;
- static long g_dense_op_sparse_count = 0;
- #define EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN g_dense_op_sparse_count++;
- #define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN g_dense_op_sparse_count+=10;
- #define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN g_dense_op_sparse_count+=20;
- #endif
- #include "sparse.h"
- template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
- {
- typedef typename SparseMatrixType::StorageIndex StorageIndex;
- typedef Matrix<StorageIndex,2,1> Vector2;
-
- const Index rows = ref.rows();
- const Index cols = ref.cols();
- //const Index inner = ref.innerSize();
- //const Index outer = ref.outerSize();
- typedef typename SparseMatrixType::Scalar Scalar;
- typedef typename SparseMatrixType::RealScalar RealScalar;
- enum { Flags = SparseMatrixType::Flags };
- double density = (std::max)(8./(rows*cols), 0.01);
- typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
- typedef Matrix<Scalar,Dynamic,1> DenseVector;
- Scalar eps = 1e-6;
- Scalar s1 = internal::random<Scalar>();
- {
- SparseMatrixType m(rows, cols);
- DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
- DenseVector vec1 = DenseVector::Random(rows);
- std::vector<Vector2> zeroCoords;
- std::vector<Vector2> nonzeroCoords;
- initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
- // test coeff and coeffRef
- for (std::size_t i=0; i<zeroCoords.size(); ++i)
- {
- VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
- if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
- VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 );
- }
- VERIFY_IS_APPROX(m, refMat);
- if(!nonzeroCoords.empty()) {
- m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
- refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
- }
- VERIFY_IS_APPROX(m, refMat);
- // test assertion
- VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 );
- VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 );
- }
- // test insert (inner random)
- {
- DenseMatrix m1(rows,cols);
- m1.setZero();
- SparseMatrixType m2(rows,cols);
- bool call_reserve = internal::random<int>()%2;
- Index nnz = internal::random<int>(1,int(rows)/2);
- if(call_reserve)
- {
- if(internal::random<int>()%2)
- m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz)));
- else
- m2.reserve(m2.outerSize() * nnz);
- }
- g_realloc_count = 0;
- for (Index j=0; j<cols; ++j)
- {
- for (Index k=0; k<nnz; ++k)
- {
- Index i = internal::random<Index>(0,rows-1);
- if (m1.coeff(i,j)==Scalar(0))
- m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
- }
- }
-
- if(call_reserve && !SparseMatrixType::IsRowMajor)
- {
- VERIFY(g_realloc_count==0);
- }
-
- m2.finalize();
- VERIFY_IS_APPROX(m2,m1);
- }
- // test insert (fully random)
- {
- DenseMatrix m1(rows,cols);
- m1.setZero();
- SparseMatrixType m2(rows,cols);
- if(internal::random<int>()%2)
- m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
- for (int k=0; k<rows*cols; ++k)
- {
- Index i = internal::random<Index>(0,rows-1);
- Index j = internal::random<Index>(0,cols-1);
- if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
- m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
- else
- {
- Scalar v = internal::random<Scalar>();
- m2.coeffRef(i,j) += v;
- m1(i,j) += v;
- }
- }
- VERIFY_IS_APPROX(m2,m1);
- }
-
- // test insert (un-compressed)
- for(int mode=0;mode<4;++mode)
- {
- DenseMatrix m1(rows,cols);
- m1.setZero();
- SparseMatrixType m2(rows,cols);
- VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8)));
- m2.reserve(r);
- for (Index k=0; k<rows*cols; ++k)
- {
- Index i = internal::random<Index>(0,rows-1);
- Index j = internal::random<Index>(0,cols-1);
- if (m1.coeff(i,j)==Scalar(0))
- m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
- if(mode==3)
- m2.reserve(r);
- }
- if(internal::random<int>()%2)
- m2.makeCompressed();
- VERIFY_IS_APPROX(m2,m1);
- }
- // test basic computations
- {
- DenseMatrix refM1 = DenseMatrix::Zero(rows, cols);
- DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
- DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
- DenseMatrix refM4 = DenseMatrix::Zero(rows, cols);
- SparseMatrixType m1(rows, cols);
- SparseMatrixType m2(rows, cols);
- SparseMatrixType m3(rows, cols);
- SparseMatrixType m4(rows, cols);
- initSparse<Scalar>(density, refM1, m1);
- initSparse<Scalar>(density, refM2, m2);
- initSparse<Scalar>(density, refM3, m3);
- initSparse<Scalar>(density, refM4, m4);
- if(internal::random<bool>())
- m1.makeCompressed();
- Index m1_nnz = m1.nonZeros();
- VERIFY_IS_APPROX(m1*s1, refM1*s1);
- VERIFY_IS_APPROX(m1+m2, refM1+refM2);
- VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
- VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
- VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
- VERIFY_IS_APPROX(m4=m1/s1, refM1/s1);
- VERIFY_IS_EQUAL(m4.nonZeros(), m1_nnz);
- if(SparseMatrixType::IsRowMajor)
- VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
- else
- VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0)));
- DenseVector rv = DenseVector::Random(m1.cols());
- DenseVector cv = DenseVector::Random(m1.rows());
- Index r = internal::random<Index>(0,m1.rows()-2);
- Index c = internal::random<Index>(0,m1.cols()-1);
- VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv));
- VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv));
- VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv));
- VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
- VERIFY_IS_APPROX(m1.real(), refM1.real());
- refM4.setRandom();
- // sparse cwise* dense
- VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
- // dense cwise* sparse
- VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3));
- // VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
- // mixed sparse-dense
- VERIFY_IS_APPROX(refM4 + m3, refM4 + refM3);
- VERIFY_IS_APPROX(m3 + refM4, refM3 + refM4);
- VERIFY_IS_APPROX(refM4 - m3, refM4 - refM3);
- VERIFY_IS_APPROX(m3 - refM4, refM3 - refM4);
- VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
- VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
- VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3.cwiseProduct(m3)).eval(), RealScalar(0.5)*refM4 + refM3.cwiseProduct(refM3));
- VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
- VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
- VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
- VERIFY_IS_APPROX(((refM3+m3)+RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM3 + (refM3+refM3));
- VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (refM3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
- VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+refM3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
- VERIFY_IS_APPROX(m1.sum(), refM1.sum());
- m4 = m1; refM4 = m4;
- VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
- VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
- VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
- VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
- VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
- VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
- refM3 = refM1;
-
- VERIFY_IS_APPROX(refM1+=m2, refM3+=refM2);
- VERIFY_IS_APPROX(refM1-=m2, refM3-=refM2);
- g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2+refM4, refM3 =refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,10);
- g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2+refM4, refM3+=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
- g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2+refM4, refM3-=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
- g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4+m2, refM3 =refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
- g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4+m2, refM3+=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
- g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4+m2, refM3-=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
- g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2-refM4, refM3 =refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,20);
- g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2-refM4, refM3+=refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
- g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2-refM4, refM3-=refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
- g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4-m2, refM3 =refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
- g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4-m2, refM3+=refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
- g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4-m2, refM3-=refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
- refM3 = m3;
- if (rows>=2 && cols>=2)
- {
- VERIFY_RAISES_ASSERT( m1 += m1.innerVector(0) );
- VERIFY_RAISES_ASSERT( m1 -= m1.innerVector(0) );
- VERIFY_RAISES_ASSERT( refM1 -= m1.innerVector(0) );
- VERIFY_RAISES_ASSERT( refM1 += m1.innerVector(0) );
- }
- m1 = m4; refM1 = refM4;
- // test aliasing
- VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1));
- VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
- m1 = m4; refM1 = refM4;
- VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval()));
- VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
- m1 = m4; refM1 = refM4;
- VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval()));
- VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
- m1 = m4; refM1 = refM4;
- VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1));
- VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
- m1 = m4; refM1 = refM4;
- if(m1.isCompressed())
- {
- VERIFY_IS_APPROX(m1.coeffs().sum(), m1.sum());
- m1.coeffs() += s1;
- for(Index j = 0; j<m1.outerSize(); ++j)
- for(typename SparseMatrixType::InnerIterator it(m1,j); it; ++it)
- refM1(it.row(), it.col()) += s1;
- VERIFY_IS_APPROX(m1, refM1);
- }
- // and/or
- {
- typedef SparseMatrix<bool, SparseMatrixType::Options, typename SparseMatrixType::StorageIndex> SpBool;
- SpBool mb1 = m1.real().template cast<bool>();
- SpBool mb2 = m2.real().template cast<bool>();
- VERIFY_IS_EQUAL(mb1.template cast<int>().sum(), refM1.real().template cast<bool>().count());
- VERIFY_IS_EQUAL((mb1 && mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
- VERIFY_IS_EQUAL((mb1 || mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() || refM2.real().template cast<bool>()).count());
- SpBool mb3 = mb1 && mb2;
- if(mb1.coeffs().all() && mb2.coeffs().all())
- {
- VERIFY_IS_EQUAL(mb3.nonZeros(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
- }
- }
- }
- // test reverse iterators
- {
- DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
- SparseMatrixType m2(rows, cols);
- initSparse<Scalar>(density, refMat2, m2);
- std::vector<Scalar> ref_value(m2.innerSize());
- std::vector<Index> ref_index(m2.innerSize());
- if(internal::random<bool>())
- m2.makeCompressed();
- for(Index j = 0; j<m2.outerSize(); ++j)
- {
- Index count_forward = 0;
- for(typename SparseMatrixType::InnerIterator it(m2,j); it; ++it)
- {
- ref_value[ref_value.size()-1-count_forward] = it.value();
- ref_index[ref_index.size()-1-count_forward] = it.index();
- count_forward++;
- }
- Index count_reverse = 0;
- for(typename SparseMatrixType::ReverseInnerIterator it(m2,j); it; --it)
- {
- VERIFY_IS_APPROX( std::abs(ref_value[ref_value.size()-count_forward+count_reverse])+1, std::abs(it.value())+1);
- VERIFY_IS_EQUAL( ref_index[ref_index.size()-count_forward+count_reverse] , it.index());
- count_reverse++;
- }
- VERIFY_IS_EQUAL(count_forward, count_reverse);
- }
- }
- // test transpose
- {
- DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
- SparseMatrixType m2(rows, cols);
- initSparse<Scalar>(density, refMat2, m2);
- VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
- VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
- VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
-
- // check isApprox handles opposite storage order
- typename Transpose<SparseMatrixType>::PlainObject m3(m2);
- VERIFY(m2.isApprox(m3));
- }
- // test prune
- {
- SparseMatrixType m2(rows, cols);
- DenseMatrix refM2(rows, cols);
- refM2.setZero();
- int countFalseNonZero = 0;
- int countTrueNonZero = 0;
- m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize())));
- for (Index j=0; j<m2.cols(); ++j)
- {
- for (Index i=0; i<m2.rows(); ++i)
- {
- float x = internal::random<float>(0,1);
- if (x<0.1f)
- {
- // do nothing
- }
- else if (x<0.5f)
- {
- countFalseNonZero++;
- m2.insert(i,j) = Scalar(0);
- }
- else
- {
- countTrueNonZero++;
- m2.insert(i,j) = Scalar(1);
- refM2(i,j) = Scalar(1);
- }
- }
- }
- if(internal::random<bool>())
- m2.makeCompressed();
- VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
- if(countTrueNonZero>0)
- VERIFY_IS_APPROX(m2, refM2);
- m2.prune(Scalar(1));
- VERIFY(countTrueNonZero==m2.nonZeros());
- VERIFY_IS_APPROX(m2, refM2);
- }
- // test setFromTriplets
- {
- typedef Triplet<Scalar,StorageIndex> TripletType;
- std::vector<TripletType> triplets;
- Index ntriplets = rows*cols;
- triplets.reserve(ntriplets);
- DenseMatrix refMat_sum = DenseMatrix::Zero(rows,cols);
- DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols);
- DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols);
- for(Index i=0;i<ntriplets;++i)
- {
- StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1));
- StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1));
- Scalar v = internal::random<Scalar>();
- triplets.push_back(TripletType(r,c,v));
- refMat_sum(r,c) += v;
- if(std::abs(refMat_prod(r,c))==0)
- refMat_prod(r,c) = v;
- else
- refMat_prod(r,c) *= v;
- refMat_last(r,c) = v;
- }
- SparseMatrixType m(rows,cols);
- m.setFromTriplets(triplets.begin(), triplets.end());
- VERIFY_IS_APPROX(m, refMat_sum);
- m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>());
- VERIFY_IS_APPROX(m, refMat_prod);
- #if (EIGEN_COMP_CXXVER >= 11)
- m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; });
- VERIFY_IS_APPROX(m, refMat_last);
- #endif
- }
-
- // test Map
- {
- DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
- SparseMatrixType m2(rows, cols), m3(rows, cols);
- initSparse<Scalar>(density, refMat2, m2);
- initSparse<Scalar>(density, refMat3, m3);
- {
- Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
- Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
- VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
- VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
- }
- {
- MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
- MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
- VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
- VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
- }
- Index i = internal::random<Index>(0,rows-1);
- Index j = internal::random<Index>(0,cols-1);
- m2.coeffRef(i,j) = 123;
- if(internal::random<bool>())
- m2.makeCompressed();
- Map<SparseMatrixType> mapMat2(rows, cols, m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
- VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(123));
- VERIFY_IS_EQUAL(mapMat2.coeff(i,j),Scalar(123));
- mapMat2.coeffRef(i,j) = -123;
- VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(-123));
- }
- // test triangularView
- {
- DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
- SparseMatrixType m2(rows, cols), m3(rows, cols);
- initSparse<Scalar>(density, refMat2, m2);
- refMat3 = refMat2.template triangularView<Lower>();
- m3 = m2.template triangularView<Lower>();
- VERIFY_IS_APPROX(m3, refMat3);
- refMat3 = refMat2.template triangularView<Upper>();
- m3 = m2.template triangularView<Upper>();
- VERIFY_IS_APPROX(m3, refMat3);
- {
- refMat3 = refMat2.template triangularView<UnitUpper>();
- m3 = m2.template triangularView<UnitUpper>();
- VERIFY_IS_APPROX(m3, refMat3);
- refMat3 = refMat2.template triangularView<UnitLower>();
- m3 = m2.template triangularView<UnitLower>();
- VERIFY_IS_APPROX(m3, refMat3);
- }
- refMat3 = refMat2.template triangularView<StrictlyUpper>();
- m3 = m2.template triangularView<StrictlyUpper>();
- VERIFY_IS_APPROX(m3, refMat3);
- refMat3 = refMat2.template triangularView<StrictlyLower>();
- m3 = m2.template triangularView<StrictlyLower>();
- VERIFY_IS_APPROX(m3, refMat3);
- // check sparse-triangular to dense
- refMat3 = m2.template triangularView<StrictlyUpper>();
- VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>()));
- }
-
- // test selfadjointView
- if(!SparseMatrixType::IsRowMajor)
- {
- DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
- SparseMatrixType m2(rows, rows), m3(rows, rows);
- initSparse<Scalar>(density, refMat2, m2);
- refMat3 = refMat2.template selfadjointView<Lower>();
- m3 = m2.template selfadjointView<Lower>();
- VERIFY_IS_APPROX(m3, refMat3);
- refMat3 += refMat2.template selfadjointView<Lower>();
- m3 += m2.template selfadjointView<Lower>();
- VERIFY_IS_APPROX(m3, refMat3);
- refMat3 -= refMat2.template selfadjointView<Lower>();
- m3 -= m2.template selfadjointView<Lower>();
- VERIFY_IS_APPROX(m3, refMat3);
- // selfadjointView only works for square matrices:
- SparseMatrixType m4(rows, rows+1);
- VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>());
- VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>());
- }
-
- // test sparseView
- {
- DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
- SparseMatrixType m2(rows, rows);
- initSparse<Scalar>(density, refMat2, m2);
- VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
- // sparse view on expressions:
- VERIFY_IS_APPROX((s1*m2).eval(), (s1*refMat2).sparseView().eval());
- VERIFY_IS_APPROX((m2+m2).eval(), (refMat2+refMat2).sparseView().eval());
- VERIFY_IS_APPROX((m2*m2).eval(), (refMat2.lazyProduct(refMat2)).sparseView().eval());
- VERIFY_IS_APPROX((m2*m2).eval(), (refMat2*refMat2).sparseView().eval());
- }
- // test diagonal
- {
- DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
- SparseMatrixType m2(rows, cols);
- initSparse<Scalar>(density, refMat2, m2);
- VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval());
- DenseVector d = m2.diagonal();
- VERIFY_IS_APPROX(d, refMat2.diagonal().eval());
- d = m2.diagonal().array();
- VERIFY_IS_APPROX(d, refMat2.diagonal().eval());
- VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval());
-
- initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag);
- m2.diagonal() += refMat2.diagonal();
- refMat2.diagonal() += refMat2.diagonal();
- VERIFY_IS_APPROX(m2, refMat2);
- }
-
- // test diagonal to sparse
- {
- DenseVector d = DenseVector::Random(rows);
- DenseMatrix refMat2 = d.asDiagonal();
- SparseMatrixType m2;
- m2 = d.asDiagonal();
- VERIFY_IS_APPROX(m2, refMat2);
- SparseMatrixType m3(d.asDiagonal());
- VERIFY_IS_APPROX(m3, refMat2);
- refMat2 += d.asDiagonal();
- m2 += d.asDiagonal();
- VERIFY_IS_APPROX(m2, refMat2);
- m2.setZero(); m2 += d.asDiagonal();
- refMat2.setZero(); refMat2 += d.asDiagonal();
- VERIFY_IS_APPROX(m2, refMat2);
- m2.setZero(); m2 -= d.asDiagonal();
- refMat2.setZero(); refMat2 -= d.asDiagonal();
- VERIFY_IS_APPROX(m2, refMat2);
- initSparse<Scalar>(density, refMat2, m2);
- m2.makeCompressed();
- m2 += d.asDiagonal();
- refMat2 += d.asDiagonal();
- VERIFY_IS_APPROX(m2, refMat2);
- initSparse<Scalar>(density, refMat2, m2);
- m2.makeCompressed();
- VectorXi res(rows);
- for(Index i=0; i<rows; ++i)
- res(i) = internal::random<int>(0,3);
- m2.reserve(res);
- m2 -= d.asDiagonal();
- refMat2 -= d.asDiagonal();
- VERIFY_IS_APPROX(m2, refMat2);
- }
-
- // test conservative resize
- {
- std::vector< std::pair<StorageIndex,StorageIndex> > inc;
- if(rows > 3 && cols > 2)
- inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2));
- inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0));
- inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2));
- inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0));
- inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3));
- inc.push_back(std::pair<StorageIndex,StorageIndex>(0,-1));
- inc.push_back(std::pair<StorageIndex,StorageIndex>(-1,0));
- inc.push_back(std::pair<StorageIndex,StorageIndex>(-1,-1));
- for(size_t i = 0; i< inc.size(); i++) {
- StorageIndex incRows = inc[i].first;
- StorageIndex incCols = inc[i].second;
- SparseMatrixType m1(rows, cols);
- DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols);
- initSparse<Scalar>(density, refMat1, m1);
- SparseMatrixType m2 = m1;
- m2.makeCompressed();
- m1.conservativeResize(rows+incRows, cols+incCols);
- m2.conservativeResize(rows+incRows, cols+incCols);
- refMat1.conservativeResize(rows+incRows, cols+incCols);
- if (incRows > 0) refMat1.bottomRows(incRows).setZero();
- if (incCols > 0) refMat1.rightCols(incCols).setZero();
- VERIFY_IS_APPROX(m1, refMat1);
- VERIFY_IS_APPROX(m2, refMat1);
- // Insert new values
- if (incRows > 0)
- m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1;
- if (incCols > 0)
- m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1;
- VERIFY_IS_APPROX(m1, refMat1);
- }
- }
- // test Identity matrix
- {
- DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows);
- SparseMatrixType m1(rows, rows);
- m1.setIdentity();
- VERIFY_IS_APPROX(m1, refMat1);
- for(int k=0; k<rows*rows/4; ++k)
- {
- Index i = internal::random<Index>(0,rows-1);
- Index j = internal::random<Index>(0,rows-1);
- Scalar v = internal::random<Scalar>();
- m1.coeffRef(i,j) = v;
- refMat1.coeffRef(i,j) = v;
- VERIFY_IS_APPROX(m1, refMat1);
- if(internal::random<Index>(0,10)<2)
- m1.makeCompressed();
- }
- m1.setIdentity();
- refMat1.setIdentity();
- VERIFY_IS_APPROX(m1, refMat1);
- }
- // test array/vector of InnerIterator
- {
- typedef typename SparseMatrixType::InnerIterator IteratorType;
- DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
- SparseMatrixType m2(rows, cols);
- initSparse<Scalar>(density, refMat2, m2);
- IteratorType static_array[2];
- static_array[0] = IteratorType(m2,0);
- static_array[1] = IteratorType(m2,m2.outerSize()-1);
- VERIFY( static_array[0] || m2.innerVector(static_array[0].outer()).nonZeros() == 0 );
- VERIFY( static_array[1] || m2.innerVector(static_array[1].outer()).nonZeros() == 0 );
- if(static_array[0] && static_array[1])
- {
- ++(static_array[1]);
- static_array[1] = IteratorType(m2,0);
- VERIFY( static_array[1] );
- VERIFY( static_array[1].index() == static_array[0].index() );
- VERIFY( static_array[1].outer() == static_array[0].outer() );
- VERIFY( static_array[1].value() == static_array[0].value() );
- }
- std::vector<IteratorType> iters(2);
- iters[0] = IteratorType(m2,0);
- iters[1] = IteratorType(m2,m2.outerSize()-1);
- }
- // test reserve with empty rows/columns
- {
- SparseMatrixType m1(0,cols);
- m1.reserve(ArrayXi::Constant(m1.outerSize(),1));
- SparseMatrixType m2(rows,0);
- m2.reserve(ArrayXi::Constant(m2.outerSize(),1));
- }
- }
- template<typename SparseMatrixType>
- void big_sparse_triplet(Index rows, Index cols, double density) {
- typedef typename SparseMatrixType::StorageIndex StorageIndex;
- typedef typename SparseMatrixType::Scalar Scalar;
- typedef Triplet<Scalar,Index> TripletType;
- std::vector<TripletType> triplets;
- double nelements = density * rows*cols;
- VERIFY(nelements>=0 && nelements < static_cast<double>(NumTraits<StorageIndex>::highest()));
- Index ntriplets = Index(nelements);
- triplets.reserve(ntriplets);
- Scalar sum = Scalar(0);
- for(Index i=0;i<ntriplets;++i)
- {
- Index r = internal::random<Index>(0,rows-1);
- Index c = internal::random<Index>(0,cols-1);
- // use positive values to prevent numerical cancellation errors in sum
- Scalar v = numext::abs(internal::random<Scalar>());
- triplets.push_back(TripletType(r,c,v));
- sum += v;
- }
- SparseMatrixType m(rows,cols);
- m.setFromTriplets(triplets.begin(), triplets.end());
- VERIFY(m.nonZeros() <= ntriplets);
- VERIFY_IS_APPROX(sum, m.sum());
- }
- template<int>
- void bug1105()
- {
- // Regression test for bug 1105
- int n = Eigen::internal::random<int>(200,600);
- SparseMatrix<std::complex<double>,0, long> mat(n, n);
- std::complex<double> val;
- for(int i=0; i<n; ++i)
- {
- mat.coeffRef(i, i%(n/10)) = val;
- VERIFY(mat.data().allocatedSize()<20*n);
- }
- }
- #ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA
- EIGEN_DECLARE_TEST(sparse_basic)
- {
- g_dense_op_sparse_count = 0; // Suppresses compiler warning.
- for(int i = 0; i < g_repeat; i++) {
- int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
- if(Eigen::internal::random<int>(0,4) == 0) {
- r = c; // check square matrices in 25% of tries
- }
- EIGEN_UNUSED_VARIABLE(r+c);
- CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) ));
- CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
- CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
- CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
- CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) ));
- CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) ));
- CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) ));
-
- r = Eigen::internal::random<int>(1,100);
- c = Eigen::internal::random<int>(1,100);
- if(Eigen::internal::random<int>(0,4) == 0) {
- r = c; // check square matrices in 25% of tries
- }
-
- CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
- CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
- }
- // Regression test for bug 900: (manually insert higher values here, if you have enough RAM):
- CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125)));
- CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125)));
- CALL_SUBTEST_7( bug1105<0>() );
- }
- #endif
|