123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
- // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include <iostream>
- #include <fstream>
- #include <iomanip>
- #include "main.h"
- #include <Eigen/LevenbergMarquardt>
- using namespace std;
- using namespace Eigen;
- template <typename Scalar>
- struct sparseGaussianTest : SparseFunctor<Scalar, int>
- {
- typedef Matrix<Scalar,Dynamic,1> VectorType;
- typedef SparseFunctor<Scalar,int> Base;
- typedef typename Base::JacobianType JacobianType;
- sparseGaussianTest(int inputs, int values) : SparseFunctor<Scalar,int>(inputs,values)
- { }
-
- VectorType model(const VectorType& uv, VectorType& x)
- {
- VectorType y; //Change this to use expression template
- int m = Base::values();
- int n = Base::inputs();
- eigen_assert(uv.size()%2 == 0);
- eigen_assert(uv.size() == n);
- eigen_assert(x.size() == m);
- y.setZero(m);
- int half = n/2;
- VectorBlock<const VectorType> u(uv, 0, half);
- VectorBlock<const VectorType> v(uv, half, half);
- Scalar coeff;
- for (int j = 0; j < m; j++)
- {
- for (int i = 0; i < half; i++)
- {
- coeff = (x(j)-i)/v(i);
- coeff *= coeff;
- if (coeff < 1. && coeff > 0.)
- y(j) += u(i)*std::pow((1-coeff), 2);
- }
- }
- return y;
- }
- void initPoints(VectorType& uv_ref, VectorType& x)
- {
- m_x = x;
- m_y = this->model(uv_ref,x);
- }
- int operator()(const VectorType& uv, VectorType& fvec)
- {
- int m = Base::values();
- int n = Base::inputs();
- eigen_assert(uv.size()%2 == 0);
- eigen_assert(uv.size() == n);
- int half = n/2;
- VectorBlock<const VectorType> u(uv, 0, half);
- VectorBlock<const VectorType> v(uv, half, half);
- fvec = m_y;
- Scalar coeff;
- for (int j = 0; j < m; j++)
- {
- for (int i = 0; i < half; i++)
- {
- coeff = (m_x(j)-i)/v(i);
- coeff *= coeff;
- if (coeff < 1. && coeff > 0.)
- fvec(j) -= u(i)*std::pow((1-coeff), 2);
- }
- }
- return 0;
- }
-
- int df(const VectorType& uv, JacobianType& fjac)
- {
- int m = Base::values();
- int n = Base::inputs();
- eigen_assert(n == uv.size());
- eigen_assert(fjac.rows() == m);
- eigen_assert(fjac.cols() == n);
- int half = n/2;
- VectorBlock<const VectorType> u(uv, 0, half);
- VectorBlock<const VectorType> v(uv, half, half);
- Scalar coeff;
-
- //Derivatives with respect to u
- for (int col = 0; col < half; col++)
- {
- for (int row = 0; row < m; row++)
- {
- coeff = (m_x(row)-col)/v(col);
- coeff = coeff*coeff;
- if(coeff < 1. && coeff > 0.)
- {
- fjac.coeffRef(row,col) = -(1-coeff)*(1-coeff);
- }
- }
- }
- //Derivatives with respect to v
- for (int col = 0; col < half; col++)
- {
- for (int row = 0; row < m; row++)
- {
- coeff = (m_x(row)-col)/v(col);
- coeff = coeff*coeff;
- if(coeff < 1. && coeff > 0.)
- {
- fjac.coeffRef(row,col+half) = -4 * (u(col)/v(col))*coeff*(1-coeff);
- }
- }
- }
- return 0;
- }
-
- VectorType m_x, m_y; //Data points
- };
- template<typename T>
- void test_sparseLM_T()
- {
- typedef Matrix<T,Dynamic,1> VectorType;
-
- int inputs = 10;
- int values = 2000;
- sparseGaussianTest<T> sparse_gaussian(inputs, values);
- VectorType uv(inputs),uv_ref(inputs);
- VectorType x(values);
- // Generate the reference solution
- uv_ref << -2, 1, 4 ,8, 6, 1.8, 1.2, 1.1, 1.9 , 3;
- //Generate the reference data points
- x.setRandom();
- x = 10*x;
- x.array() += 10;
- sparse_gaussian.initPoints(uv_ref, x);
-
-
- // Generate the initial parameters
- VectorBlock<VectorType> u(uv, 0, inputs/2);
- VectorBlock<VectorType> v(uv, inputs/2, inputs/2);
- v.setOnes();
- //Generate u or Solve for u from v
- u.setOnes();
-
- // Solve the optimization problem
- LevenbergMarquardt<sparseGaussianTest<T> > lm(sparse_gaussian);
- int info;
- // info = lm.minimize(uv);
-
- VERIFY_IS_EQUAL(info,1);
- // Do a step by step solution and save the residual
- int maxiter = 200;
- int iter = 0;
- MatrixXd Err(values, maxiter);
- MatrixXd Mod(values, maxiter);
- LevenbergMarquardtSpace::Status status;
- status = lm.minimizeInit(uv);
- if (status==LevenbergMarquardtSpace::ImproperInputParameters)
- return ;
- }
- EIGEN_DECLARE_TEST(sparseLM)
- {
- CALL_SUBTEST_1(test_sparseLM_T<double>());
-
- // CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>());
- }
|