12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <limits>
- #include <Eigen/Eigenvalues>
- template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime)
- {
- typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
- typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;
- // Test basic functionality: T is triangular and A = U T U*
- for(int counter = 0; counter < g_repeat; ++counter) {
- MatrixType A = MatrixType::Random(size, size);
- ComplexSchur<MatrixType> schurOfA(A);
- VERIFY_IS_EQUAL(schurOfA.info(), Success);
- ComplexMatrixType U = schurOfA.matrixU();
- ComplexMatrixType T = schurOfA.matrixT();
- for(int row = 1; row < size; ++row) {
- for(int col = 0; col < row; ++col) {
- VERIFY(T(row,col) == (typename MatrixType::Scalar)0);
- }
- }
- VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint());
- }
- // Test asserts when not initialized
- ComplexSchur<MatrixType> csUninitialized;
- VERIFY_RAISES_ASSERT(csUninitialized.matrixT());
- VERIFY_RAISES_ASSERT(csUninitialized.matrixU());
- VERIFY_RAISES_ASSERT(csUninitialized.info());
-
- // Test whether compute() and constructor returns same result
- MatrixType A = MatrixType::Random(size, size);
- ComplexSchur<MatrixType> cs1;
- cs1.compute(A);
- ComplexSchur<MatrixType> cs2(A);
- VERIFY_IS_EQUAL(cs1.info(), Success);
- VERIFY_IS_EQUAL(cs2.info(), Success);
- VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
- VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU());
- // Test maximum number of iterations
- ComplexSchur<MatrixType> cs3;
- cs3.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A);
- VERIFY_IS_EQUAL(cs3.info(), Success);
- VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT());
- VERIFY_IS_EQUAL(cs3.matrixU(), cs1.matrixU());
- cs3.setMaxIterations(1).compute(A);
- VERIFY_IS_EQUAL(cs3.info(), size > 1 ? NoConvergence : Success);
- VERIFY_IS_EQUAL(cs3.getMaxIterations(), 1);
- MatrixType Atriangular = A;
- Atriangular.template triangularView<StrictlyLower>().setZero();
- cs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations
- VERIFY_IS_EQUAL(cs3.info(), Success);
- VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>());
- VERIFY_IS_EQUAL(cs3.matrixU(), ComplexMatrixType::Identity(size, size));
- // Test computation of only T, not U
- ComplexSchur<MatrixType> csOnlyT(A, false);
- VERIFY_IS_EQUAL(csOnlyT.info(), Success);
- VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT());
- VERIFY_RAISES_ASSERT(csOnlyT.matrixU());
- if (size > 1 && size < 20)
- {
- // Test matrix with NaN
- A(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
- ComplexSchur<MatrixType> csNaN(A);
- VERIFY_IS_EQUAL(csNaN.info(), NoConvergence);
- }
- }
- EIGEN_DECLARE_TEST(schur_complex)
- {
- CALL_SUBTEST_1(( schur<Matrix4cd>() ));
- CALL_SUBTEST_2(( schur<MatrixXcf>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4)) ));
- CALL_SUBTEST_3(( schur<Matrix<std::complex<float>, 1, 1> >() ));
- CALL_SUBTEST_4(( schur<Matrix<float, 3, 3, Eigen::RowMajor> >() ));
- // Test problem size constructors
- CALL_SUBTEST_5(ComplexSchur<MatrixXf>(10));
- }
|