123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
- // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <Eigen/QR>
- #include <Eigen/SVD>
- #include "solverbase.h"
- template <typename MatrixType>
- void cod() {
- STATIC_CHECK(( internal::is_same<typename CompleteOrthogonalDecomposition<MatrixType>::StorageIndex,int>::value ));
- Index rows = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
- Index cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
- Index cols2 = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
- Index rank = internal::random<Index>(1, (std::min)(rows, cols) - 1);
- typedef typename MatrixType::Scalar Scalar;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime,
- MatrixType::RowsAtCompileTime>
- MatrixQType;
- MatrixType matrix;
- createRandomPIMatrixOfRank(rank, rows, cols, matrix);
- CompleteOrthogonalDecomposition<MatrixType> cod(matrix);
- VERIFY(rank == cod.rank());
- VERIFY(cols - cod.rank() == cod.dimensionOfKernel());
- VERIFY(!cod.isInjective());
- VERIFY(!cod.isInvertible());
- VERIFY(!cod.isSurjective());
- MatrixQType q = cod.householderQ();
- VERIFY_IS_UNITARY(q);
- MatrixType z = cod.matrixZ();
- VERIFY_IS_UNITARY(z);
- MatrixType t;
- t.setZero(rows, cols);
- t.topLeftCorner(rank, rank) =
- cod.matrixT().topLeftCorner(rank, rank).template triangularView<Upper>();
- MatrixType c = q * t * z * cod.colsPermutation().inverse();
- VERIFY_IS_APPROX(matrix, c);
- check_solverbase<MatrixType, MatrixType>(matrix, cod, rows, cols, cols2);
- // Verify that we get the same minimum-norm solution as the SVD.
- MatrixType exact_solution = MatrixType::Random(cols, cols2);
- MatrixType rhs = matrix * exact_solution;
- MatrixType cod_solution = cod.solve(rhs);
- JacobiSVD<MatrixType> svd(matrix, ComputeThinU | ComputeThinV);
- MatrixType svd_solution = svd.solve(rhs);
- VERIFY_IS_APPROX(cod_solution, svd_solution);
- MatrixType pinv = cod.pseudoInverse();
- VERIFY_IS_APPROX(cod_solution, pinv * rhs);
- }
- template <typename MatrixType, int Cols2>
- void cod_fixedsize() {
- enum {
- Rows = MatrixType::RowsAtCompileTime,
- Cols = MatrixType::ColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef CompleteOrthogonalDecomposition<Matrix<Scalar, Rows, Cols> > COD;
- int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols)) - 1);
- Matrix<Scalar, Rows, Cols> matrix;
- createRandomPIMatrixOfRank(rank, Rows, Cols, matrix);
- COD cod(matrix);
- VERIFY(rank == cod.rank());
- VERIFY(Cols - cod.rank() == cod.dimensionOfKernel());
- VERIFY(cod.isInjective() == (rank == Rows));
- VERIFY(cod.isSurjective() == (rank == Cols));
- VERIFY(cod.isInvertible() == (cod.isInjective() && cod.isSurjective()));
- check_solverbase<Matrix<Scalar, Cols, Cols2>, Matrix<Scalar, Rows, Cols2> >(matrix, cod, Rows, Cols, Cols2);
- // Verify that we get the same minimum-norm solution as the SVD.
- Matrix<Scalar, Cols, Cols2> exact_solution;
- exact_solution.setRandom(Cols, Cols2);
- Matrix<Scalar, Rows, Cols2> rhs = matrix * exact_solution;
- Matrix<Scalar, Cols, Cols2> cod_solution = cod.solve(rhs);
- JacobiSVD<MatrixType> svd(matrix, ComputeFullU | ComputeFullV);
- Matrix<Scalar, Cols, Cols2> svd_solution = svd.solve(rhs);
- VERIFY_IS_APPROX(cod_solution, svd_solution);
- typename Inverse<COD>::PlainObject pinv = cod.pseudoInverse();
- VERIFY_IS_APPROX(cod_solution, pinv * rhs);
- }
- template<typename MatrixType> void qr()
- {
- using std::sqrt;
- STATIC_CHECK(( internal::is_same<typename ColPivHouseholderQR<MatrixType>::StorageIndex,int>::value ));
- Index rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols2 = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
- Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
- MatrixType m1;
- createRandomPIMatrixOfRank(rank,rows,cols,m1);
- ColPivHouseholderQR<MatrixType> qr(m1);
- VERIFY_IS_EQUAL(rank, qr.rank());
- VERIFY_IS_EQUAL(cols - qr.rank(), qr.dimensionOfKernel());
- VERIFY(!qr.isInjective());
- VERIFY(!qr.isInvertible());
- VERIFY(!qr.isSurjective());
- MatrixQType q = qr.householderQ();
- VERIFY_IS_UNITARY(q);
- MatrixType r = qr.matrixQR().template triangularView<Upper>();
- MatrixType c = q * r * qr.colsPermutation().inverse();
- VERIFY_IS_APPROX(m1, c);
- // Verify that the absolute value of the diagonal elements in R are
- // non-increasing until they reach the singularity threshold.
- RealScalar threshold =
- sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon();
- for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
- RealScalar x = numext::abs(r(i, i));
- RealScalar y = numext::abs(r(i + 1, i + 1));
- if (x < threshold && y < threshold) continue;
- if (!test_isApproxOrLessThan(y, x)) {
- for (Index j = 0; j < (std::min)(rows, cols); ++j) {
- std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
- }
- std::cout << "Failure at i=" << i << ", rank=" << rank
- << ", threshold=" << threshold << std::endl;
- }
- VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
- }
- check_solverbase<MatrixType, MatrixType>(m1, qr, rows, cols, cols2);
- {
- MatrixType m2, m3;
- Index size = rows;
- do {
- m1 = MatrixType::Random(size,size);
- qr.compute(m1);
- } while(!qr.isInvertible());
- MatrixType m1_inv = qr.inverse();
- m3 = m1 * MatrixType::Random(size,cols2);
- m2 = qr.solve(m3);
- VERIFY_IS_APPROX(m2, m1_inv*m3);
- }
- }
- template<typename MatrixType, int Cols2> void qr_fixedsize()
- {
- using std::sqrt;
- using std::abs;
- enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols))-1);
- Matrix<Scalar,Rows,Cols> m1;
- createRandomPIMatrixOfRank(rank,Rows,Cols,m1);
- ColPivHouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);
- VERIFY_IS_EQUAL(rank, qr.rank());
- VERIFY_IS_EQUAL(Cols - qr.rank(), qr.dimensionOfKernel());
- VERIFY_IS_EQUAL(qr.isInjective(), (rank == Rows));
- VERIFY_IS_EQUAL(qr.isSurjective(), (rank == Cols));
- VERIFY_IS_EQUAL(qr.isInvertible(), (qr.isInjective() && qr.isSurjective()));
- Matrix<Scalar,Rows,Cols> r = qr.matrixQR().template triangularView<Upper>();
- Matrix<Scalar,Rows,Cols> c = qr.householderQ() * r * qr.colsPermutation().inverse();
- VERIFY_IS_APPROX(m1, c);
- check_solverbase<Matrix<Scalar,Cols,Cols2>, Matrix<Scalar,Rows,Cols2> >(m1, qr, Rows, Cols, Cols2);
- // Verify that the absolute value of the diagonal elements in R are
- // non-increasing until they reache the singularity threshold.
- RealScalar threshold =
- sqrt(RealScalar(Rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
- for (Index i = 0; i < (std::min)(int(Rows), int(Cols)) - 1; ++i) {
- RealScalar x = numext::abs(r(i, i));
- RealScalar y = numext::abs(r(i + 1, i + 1));
- if (x < threshold && y < threshold) continue;
- if (!test_isApproxOrLessThan(y, x)) {
- for (Index j = 0; j < (std::min)(int(Rows), int(Cols)); ++j) {
- std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
- }
- std::cout << "Failure at i=" << i << ", rank=" << rank
- << ", threshold=" << threshold << std::endl;
- }
- VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
- }
- }
- // This test is meant to verify that pivots are chosen such that
- // even for a graded matrix, the diagonal of R falls of roughly
- // monotonically until it reaches the threshold for singularity.
- // We use the so-called Kahan matrix, which is a famous counter-example
- // for rank-revealing QR. See
- // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
- // page 3 for more detail.
- template<typename MatrixType> void qr_kahan_matrix()
- {
- using std::sqrt;
- using std::abs;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- Index rows = 300, cols = rows;
- MatrixType m1;
- m1.setZero(rows,cols);
- RealScalar s = std::pow(NumTraits<RealScalar>::epsilon(), 1.0 / rows);
- RealScalar c = std::sqrt(1 - s*s);
- RealScalar pow_s_i(1.0); // pow(s,i)
- for (Index i = 0; i < rows; ++i) {
- m1(i, i) = pow_s_i;
- m1.row(i).tail(rows - i - 1) = -pow_s_i * c * MatrixType::Ones(1, rows - i - 1);
- pow_s_i *= s;
- }
- m1 = (m1 + m1.transpose()).eval();
- ColPivHouseholderQR<MatrixType> qr(m1);
- MatrixType r = qr.matrixQR().template triangularView<Upper>();
- RealScalar threshold =
- std::sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon();
- for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
- RealScalar x = numext::abs(r(i, i));
- RealScalar y = numext::abs(r(i + 1, i + 1));
- if (x < threshold && y < threshold) continue;
- if (!test_isApproxOrLessThan(y, x)) {
- for (Index j = 0; j < (std::min)(rows, cols); ++j) {
- std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
- }
- std::cout << "Failure at i=" << i << ", rank=" << qr.rank()
- << ", threshold=" << threshold << std::endl;
- }
- VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
- }
- }
- template<typename MatrixType> void qr_invertible()
- {
- using std::log;
- using std::abs;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename MatrixType::Scalar Scalar;
- int size = internal::random<int>(10,50);
- MatrixType m1(size, size), m2(size, size), m3(size, size);
- m1 = MatrixType::Random(size,size);
- if (internal::is_same<RealScalar,float>::value)
- {
- // let's build a matrix more stable to inverse
- MatrixType a = MatrixType::Random(size,size*2);
- m1 += a * a.adjoint();
- }
- ColPivHouseholderQR<MatrixType> qr(m1);
- check_solverbase<MatrixType, MatrixType>(m1, qr, size, size, size);
- // now construct a matrix with prescribed determinant
- m1.setZero();
- for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
- RealScalar absdet = abs(m1.diagonal().prod());
- m3 = qr.householderQ(); // get a unitary
- m1 = m3 * m1 * m3;
- qr.compute(m1);
- VERIFY_IS_APPROX(absdet, qr.absDeterminant());
- VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
- }
- template<typename MatrixType> void qr_verify_assert()
- {
- MatrixType tmp;
- ColPivHouseholderQR<MatrixType> qr;
- VERIFY_RAISES_ASSERT(qr.matrixQR())
- VERIFY_RAISES_ASSERT(qr.solve(tmp))
- VERIFY_RAISES_ASSERT(qr.transpose().solve(tmp))
- VERIFY_RAISES_ASSERT(qr.adjoint().solve(tmp))
- VERIFY_RAISES_ASSERT(qr.householderQ())
- VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
- VERIFY_RAISES_ASSERT(qr.isInjective())
- VERIFY_RAISES_ASSERT(qr.isSurjective())
- VERIFY_RAISES_ASSERT(qr.isInvertible())
- VERIFY_RAISES_ASSERT(qr.inverse())
- VERIFY_RAISES_ASSERT(qr.absDeterminant())
- VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
- }
- template<typename MatrixType> void cod_verify_assert()
- {
- MatrixType tmp;
- CompleteOrthogonalDecomposition<MatrixType> cod;
- VERIFY_RAISES_ASSERT(cod.matrixQTZ())
- VERIFY_RAISES_ASSERT(cod.solve(tmp))
- VERIFY_RAISES_ASSERT(cod.transpose().solve(tmp))
- VERIFY_RAISES_ASSERT(cod.adjoint().solve(tmp))
- VERIFY_RAISES_ASSERT(cod.householderQ())
- VERIFY_RAISES_ASSERT(cod.dimensionOfKernel())
- VERIFY_RAISES_ASSERT(cod.isInjective())
- VERIFY_RAISES_ASSERT(cod.isSurjective())
- VERIFY_RAISES_ASSERT(cod.isInvertible())
- VERIFY_RAISES_ASSERT(cod.pseudoInverse())
- VERIFY_RAISES_ASSERT(cod.absDeterminant())
- VERIFY_RAISES_ASSERT(cod.logAbsDeterminant())
- }
- EIGEN_DECLARE_TEST(qr_colpivoting)
- {
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( qr<MatrixXf>() );
- CALL_SUBTEST_2( qr<MatrixXd>() );
- CALL_SUBTEST_3( qr<MatrixXcd>() );
- CALL_SUBTEST_4(( qr_fixedsize<Matrix<float,3,5>, 4 >() ));
- CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,6,2>, 3 >() ));
- CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,1,1>, 1 >() ));
- }
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( cod<MatrixXf>() );
- CALL_SUBTEST_2( cod<MatrixXd>() );
- CALL_SUBTEST_3( cod<MatrixXcd>() );
- CALL_SUBTEST_4(( cod_fixedsize<Matrix<float,3,5>, 4 >() ));
- CALL_SUBTEST_5(( cod_fixedsize<Matrix<double,6,2>, 3 >() ));
- CALL_SUBTEST_5(( cod_fixedsize<Matrix<double,1,1>, 1 >() ));
- }
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
- CALL_SUBTEST_2( qr_invertible<MatrixXd>() );
- CALL_SUBTEST_6( qr_invertible<MatrixXcf>() );
- CALL_SUBTEST_3( qr_invertible<MatrixXcd>() );
- }
- CALL_SUBTEST_7(qr_verify_assert<Matrix3f>());
- CALL_SUBTEST_8(qr_verify_assert<Matrix3d>());
- CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
- CALL_SUBTEST_2(qr_verify_assert<MatrixXd>());
- CALL_SUBTEST_6(qr_verify_assert<MatrixXcf>());
- CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>());
- CALL_SUBTEST_7(cod_verify_assert<Matrix3f>());
- CALL_SUBTEST_8(cod_verify_assert<Matrix3d>());
- CALL_SUBTEST_1(cod_verify_assert<MatrixXf>());
- CALL_SUBTEST_2(cod_verify_assert<MatrixXd>());
- CALL_SUBTEST_6(cod_verify_assert<MatrixXcf>());
- CALL_SUBTEST_3(cod_verify_assert<MatrixXcd>());
- // Test problem size constructors
- CALL_SUBTEST_9(ColPivHouseholderQR<MatrixXf>(10, 20));
- CALL_SUBTEST_1( qr_kahan_matrix<MatrixXf>() );
- CALL_SUBTEST_2( qr_kahan_matrix<MatrixXd>() );
- }
|