123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <Eigen/QR>
- template<typename Derived1, typename Derived2>
- bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision())
- {
- return !((m1-m2).cwiseAbs2().maxCoeff() < epsilon * epsilon
- * (std::max)(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff()));
- }
- template<typename MatrixType> void product(const MatrixType& m)
- {
- /* this test covers the following files:
- Identity.h Product.h
- */
- typedef typename MatrixType::Scalar Scalar;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType;
- typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType;
- typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
- MatrixType::Flags&RowMajorBit?ColMajor:RowMajor> OtherMajorMatrixType;
- Index rows = m.rows();
- Index cols = m.cols();
- // this test relies a lot on Random.h, and there's not much more that we can do
- // to test it, hence I consider that we will have tested Random.h
- MatrixType m1 = MatrixType::Random(rows, cols),
- m2 = MatrixType::Random(rows, cols),
- m3(rows, cols);
- RowSquareMatrixType
- identity = RowSquareMatrixType::Identity(rows, rows),
- square = RowSquareMatrixType::Random(rows, rows),
- res = RowSquareMatrixType::Random(rows, rows);
- ColSquareMatrixType
- square2 = ColSquareMatrixType::Random(cols, cols),
- res2 = ColSquareMatrixType::Random(cols, cols);
- RowVectorType v1 = RowVectorType::Random(rows);
- ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
- OtherMajorMatrixType tm1 = m1;
- Scalar s1 = internal::random<Scalar>();
- Index r = internal::random<Index>(0, rows-1),
- c = internal::random<Index>(0, cols-1),
- c2 = internal::random<Index>(0, cols-1);
- // begin testing Product.h: only associativity for now
- // (we use Transpose.h but this doesn't count as a test for it)
- VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
- m3 = m1;
- m3 *= m1.transpose() * m2;
- VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
- VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
- // continue testing Product.h: distributivity
- VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2);
- VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2);
- // continue testing Product.h: compatibility with ScalarMultiple.h
- VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1);
- VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1));
- // test Product.h together with Identity.h
- VERIFY_IS_APPROX(v1, identity*v1);
- VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity);
- // again, test operator() to check const-qualification
- VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
- if (rows!=cols)
- VERIFY_RAISES_ASSERT(m3 = m1*m1);
- // test the previous tests were not screwed up because operator* returns 0
- // (we use the more accurate default epsilon)
- if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
- {
- VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1));
- }
- // test optimized operator+= path
- res = square;
- res.noalias() += m1 * m2.transpose();
- VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
- if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
- {
- VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
- }
- vcres = vc2;
- vcres.noalias() += m1.transpose() * v1;
- VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
- // test optimized operator-= path
- res = square;
- res.noalias() -= m1 * m2.transpose();
- VERIFY_IS_APPROX(res, square - (m1 * m2.transpose()));
- if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
- {
- VERIFY(areNotApprox(res,square - m2 * m1.transpose()));
- }
- vcres = vc2;
- vcres.noalias() -= m1.transpose() * v1;
- VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1);
- // test scaled products
- res = square;
- res.noalias() = s1 * m1 * m2.transpose();
- VERIFY_IS_APPROX(res, ((s1*m1).eval() * m2.transpose()));
- res = square;
- res.noalias() += s1 * m1 * m2.transpose();
- VERIFY_IS_APPROX(res, square + ((s1*m1).eval() * m2.transpose()));
- res = square;
- res.noalias() -= s1 * m1 * m2.transpose();
- VERIFY_IS_APPROX(res, square - ((s1*m1).eval() * m2.transpose()));
- // test d ?= a+b*c rules
- res.noalias() = square + m1 * m2.transpose();
- VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
- res.noalias() += square + m1 * m2.transpose();
- VERIFY_IS_APPROX(res, 2*(square + m1 * m2.transpose()));
- res.noalias() -= square + m1 * m2.transpose();
- VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
- // test d ?= a-b*c rules
- res.noalias() = square - m1 * m2.transpose();
- VERIFY_IS_APPROX(res, square - m1 * m2.transpose());
- res.noalias() += square - m1 * m2.transpose();
- VERIFY_IS_APPROX(res, 2*(square - m1 * m2.transpose()));
- res.noalias() -= square - m1 * m2.transpose();
- VERIFY_IS_APPROX(res, square - m1 * m2.transpose());
- tm1 = m1;
- VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
- VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);
- // test submatrix and matrix/vector product
- for (int i=0; i<rows; ++i)
- res.row(i) = m1.row(i) * m2.transpose();
- VERIFY_IS_APPROX(res, m1 * m2.transpose());
- // the other way round:
- for (int i=0; i<rows; ++i)
- res.col(i) = m1 * m2.transpose().col(i);
- VERIFY_IS_APPROX(res, m1 * m2.transpose());
- res2 = square2;
- res2.noalias() += m1.transpose() * m2;
- VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
- if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
- {
- VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1));
- }
- VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval());
- VERIFY_IS_APPROX(res.col(r).noalias() = square * square.col(r), (square * square.col(r)).eval());
- // vector at runtime (see bug 1166)
- {
- RowSquareMatrixType ref(square);
- ColSquareMatrixType ref2(square2);
- ref = res = square;
- VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.col(0).transpose() * square.transpose(), (ref.row(0) = m1.col(0).transpose() * square.transpose()));
- VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.block(0,0,rows,1).transpose() * square.transpose(), (ref.row(0) = m1.col(0).transpose() * square.transpose()));
- VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.col(0).transpose() * square, (ref.row(0) = m1.col(0).transpose() * square));
- VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.block(0,0,rows,1).transpose() * square, (ref.row(0) = m1.col(0).transpose() * square));
- ref2 = res2 = square2;
- VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.row(0) * square2.transpose(), (ref2.row(0) = m1.row(0) * square2.transpose()));
- VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.block(0,0,1,cols) * square2.transpose(), (ref2.row(0) = m1.row(0) * square2.transpose()));
- VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.row(0) * square2, (ref2.row(0) = m1.row(0) * square2));
- VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.block(0,0,1,cols) * square2, (ref2.row(0) = m1.row(0) * square2));
- }
- // vector.block() (see bug 1283)
- {
- RowVectorType w1(rows);
- VERIFY_IS_APPROX(square * v1.block(0,0,rows,1), square * v1);
- VERIFY_IS_APPROX(w1.noalias() = square * v1.block(0,0,rows,1), square * v1);
- VERIFY_IS_APPROX(w1.block(0,0,rows,1).noalias() = square * v1.block(0,0,rows,1), square * v1);
- Matrix<Scalar,1,MatrixType::ColsAtCompileTime> w2(cols);
- VERIFY_IS_APPROX(vc2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
- VERIFY_IS_APPROX(w2.noalias() = vc2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
- VERIFY_IS_APPROX(w2.block(0,0,1,cols).noalias() = vc2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
- vc2 = square2.block(0,0,1,cols).transpose();
- VERIFY_IS_APPROX(square2.block(0,0,1,cols) * square2, vc2.transpose() * square2);
- VERIFY_IS_APPROX(w2.noalias() = square2.block(0,0,1,cols) * square2, vc2.transpose() * square2);
- VERIFY_IS_APPROX(w2.block(0,0,1,cols).noalias() = square2.block(0,0,1,cols) * square2, vc2.transpose() * square2);
- vc2 = square2.block(0,0,cols,1);
- VERIFY_IS_APPROX(square2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
- VERIFY_IS_APPROX(w2.noalias() = square2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
- VERIFY_IS_APPROX(w2.block(0,0,1,cols).noalias() = square2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
- }
- // inner product
- {
- Scalar x = square2.row(c) * square2.col(c2);
- VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum());
- }
- // outer product
- {
- VERIFY_IS_APPROX(m1.col(c) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
- VERIFY_IS_APPROX(m1.row(r).transpose() * m1.col(c).transpose(), m1.block(r,0,1,cols).transpose() * m1.block(0,c,rows,1).transpose());
- VERIFY_IS_APPROX(m1.block(0,c,rows,1) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
- VERIFY_IS_APPROX(m1.col(c) * m1.block(r,0,1,cols), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
- VERIFY_IS_APPROX(m1.leftCols(1) * m1.row(r), m1.block(0,0,rows,1) * m1.block(r,0,1,cols));
- VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0,c,rows,1) * m1.block(0,0,1,cols));
- }
- // Aliasing
- {
- ColVectorType x(cols); x.setRandom();
- ColVectorType z(x);
- ColVectorType y(cols); y.setZero();
- ColSquareMatrixType A(cols,cols); A.setRandom();
- // CwiseBinaryOp
- VERIFY_IS_APPROX(x = y + A*x, A*z);
- x = z;
- VERIFY_IS_APPROX(x = y - A*x, A*(-z));
- x = z;
- // CwiseUnaryOp
- VERIFY_IS_APPROX(x = Scalar(1.)*(A*x), A*z);
- }
- // regression for blas_trais
- {
- VERIFY_IS_APPROX(square * (square*square).transpose(), square * square.transpose() * square.transpose());
- VERIFY_IS_APPROX(square * (-(square*square)), -square * square * square);
- VERIFY_IS_APPROX(square * (s1*(square*square)), s1 * square * square * square);
- VERIFY_IS_APPROX(square * (square*square).conjugate(), square * square.conjugate() * square.conjugate());
- }
- // destination with a non-default inner-stride
- // see bug 1741
- if(!MatrixType::IsRowMajor)
- {
- typedef Matrix<Scalar,Dynamic,Dynamic> MatrixX;
- MatrixX buffer(2*rows,2*rows);
- Map<RowSquareMatrixType,0,Stride<Dynamic,2> > map1(buffer.data(),rows,rows,Stride<Dynamic,2>(2*rows,2));
- buffer.setZero();
- VERIFY_IS_APPROX(map1 = m1 * m2.transpose(), (m1 * m2.transpose()).eval());
- buffer.setZero();
- VERIFY_IS_APPROX(map1.noalias() = m1 * m2.transpose(), (m1 * m2.transpose()).eval());
- buffer.setZero();
- VERIFY_IS_APPROX(map1.noalias() += m1 * m2.transpose(), (m1 * m2.transpose()).eval());
- }
- }
|