12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <Eigen/LU>
- #include <algorithm>
- template<typename MatrixType> void inverse_permutation_4x4()
- {
- typedef typename MatrixType::Scalar Scalar;
- Vector4i indices(0,1,2,3);
- for(int i = 0; i < 24; ++i)
- {
- MatrixType m = PermutationMatrix<4>(indices);
- MatrixType inv = m.inverse();
- double error = double( (m*inv-MatrixType::Identity()).norm() / NumTraits<Scalar>::epsilon() );
- EIGEN_DEBUG_VAR(error)
- VERIFY(error == 0.0);
- std::next_permutation(indices.data(),indices.data()+4);
- }
- }
- template<typename MatrixType> void inverse_general_4x4(int repeat)
- {
- using std::abs;
- typedef typename MatrixType::Scalar Scalar;
- double error_sum = 0., error_max = 0.;
- for(int i = 0; i < repeat; ++i)
- {
- MatrixType m;
- bool is_invertible;
- do {
- m = MatrixType::Random();
- is_invertible = Eigen::FullPivLU<MatrixType>(m).isInvertible();
- } while(!is_invertible);
- MatrixType inv = m.inverse();
- double error = double( (m*inv-MatrixType::Identity()).norm());
- error_sum += error;
- error_max = (std::max)(error_max, error);
- }
- std::cerr << "inverse_general_4x4, Scalar = " << type_name<Scalar>() << std::endl;
- double error_avg = error_sum / repeat;
- EIGEN_DEBUG_VAR(error_avg);
- EIGEN_DEBUG_VAR(error_max);
- // FIXME that 1.25 used to be a 1.0 until the NumTraits changes on 28 April 2010, what's going wrong??
- // FIXME that 1.25 used to be 1.2 until we tested gcc 4.1 on 30 June 2010 and got 1.21.
- VERIFY(error_avg < (NumTraits<Scalar>::IsComplex ? 8.0 : 1.25));
- VERIFY(error_max < (NumTraits<Scalar>::IsComplex ? 64.0 : 20.0));
- {
- int s = 5;//internal::random<int>(4,10);
- int i = 0;//internal::random<int>(0,s-4);
- int j = 0;//internal::random<int>(0,s-4);
- Matrix<Scalar,5,5> mat(s,s);
- mat.setRandom();
- MatrixType submat = mat.template block<4,4>(i,j);
- MatrixType mat_inv = mat.template block<4,4>(i,j).inverse();
- VERIFY_IS_APPROX(mat_inv, submat.inverse());
- mat.template block<4,4>(i,j) = submat.inverse();
- VERIFY_IS_APPROX(mat_inv, (mat.template block<4,4>(i,j)));
- }
- }
- EIGEN_DECLARE_TEST(prec_inverse_4x4)
- {
- CALL_SUBTEST_1((inverse_permutation_4x4<Matrix4f>()));
- CALL_SUBTEST_1(( inverse_general_4x4<Matrix4f>(200000 * g_repeat) ));
- CALL_SUBTEST_1(( inverse_general_4x4<Matrix<float,4,4,RowMajor> >(200000 * g_repeat) ));
- CALL_SUBTEST_2((inverse_permutation_4x4<Matrix<double,4,4,RowMajor> >()));
- CALL_SUBTEST_2(( inverse_general_4x4<Matrix<double,4,4,ColMajor> >(200000 * g_repeat) ));
- CALL_SUBTEST_2(( inverse_general_4x4<Matrix<double,4,4,RowMajor> >(200000 * g_repeat) ));
- CALL_SUBTEST_3((inverse_permutation_4x4<Matrix4cf>()));
- CALL_SUBTEST_3((inverse_general_4x4<Matrix4cf>(50000 * g_repeat)));
- }
|