123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
- // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <typeinfo>
- #if defined __GNUC__ && __GNUC__>=6
- #pragma GCC diagnostic ignored "-Wignored-attributes"
- #endif
- // using namespace Eigen;
- bool g_first_pass = true;
- namespace Eigen {
- namespace internal {
- template<typename T> T negate(const T& x) { return -x; }
- template<typename T>
- Map<const Array<unsigned char,sizeof(T),1> >
- bits(const T& x) {
- return Map<const Array<unsigned char,sizeof(T),1> >(reinterpret_cast<const unsigned char *>(&x));
- }
- // The following implement bitwise operations on floating point types
- template<typename T,typename Bits,typename Func>
- T apply_bit_op(Bits a, Bits b, Func f) {
- Array<unsigned char,sizeof(T),1> data;
- T res;
- for(Index i = 0; i < data.size(); ++i)
- data[i] = f(a[i], b[i]);
- // Note: The reinterpret_cast works around GCC's class-memaccess warnings:
- std::memcpy(reinterpret_cast<unsigned char*>(&res), data.data(), sizeof(T));
- return res;
- }
- #define EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,T) \
- template<> T EIGEN_CAT(p,OP)(const T& a,const T& b) { \
- return apply_bit_op<T>(bits(a),bits(b),FUNC); \
- }
- #define EIGEN_TEST_MAKE_BITWISE(OP,FUNC) \
- EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,float) \
- EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,double) \
- EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,half) \
- EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,bfloat16) \
- EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<float>) \
- EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<double>)
- EIGEN_TEST_MAKE_BITWISE(xor,std::bit_xor<unsigned char>())
- EIGEN_TEST_MAKE_BITWISE(and,std::bit_and<unsigned char>())
- EIGEN_TEST_MAKE_BITWISE(or, std::bit_or<unsigned char>())
- struct bit_andnot{
- template<typename T> T
- operator()(T a, T b) const { return a & (~b); }
- };
- EIGEN_TEST_MAKE_BITWISE(andnot, bit_andnot())
- template<typename T>
- bool biteq(T a, T b) {
- return (bits(a) == bits(b)).all();
- }
- }
- namespace test {
- // NOTE: we disable inlining for this function to workaround a GCC issue when using -O3 and the i387 FPU.
- template<typename Scalar> EIGEN_DONT_INLINE
- bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits<Scalar>::Real& refvalue)
- {
- return internal::isMuchSmallerThan(a-b, refvalue);
- }
- template<typename Scalar>
- inline void print_mismatch(const Scalar* ref, const Scalar* vec, int size) {
- std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(ref,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(vec,size) << "]\n";
- }
- template<typename Scalar> bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits<Scalar>::Real& refvalue)
- {
- for (int i=0; i<size; ++i)
- {
- if (!isApproxAbs(a[i],b[i],refvalue))
- {
- print_mismatch(a, b, size);
- return false;
- }
- }
- return true;
- }
- template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size)
- {
- for (int i=0; i<size; ++i)
- {
- if ( a[i]!=b[i] && !internal::isApprox(a[i],b[i])
- && !((numext::isnan)(a[i]) && (numext::isnan)(b[i])) )
- {
- print_mismatch(a, b, size);
- return false;
- }
- }
- return true;
- }
- template<typename Scalar> bool areEqual(const Scalar* a, const Scalar* b, int size)
- {
- for (int i=0; i<size; ++i)
- {
- if ( (a[i] != b[i]) && !((numext::isnan)(a[i]) && (numext::isnan)(b[i])) )
- {
- print_mismatch(a, b, size);
- return false;
- }
- }
- return true;
- }
- #define CHECK_CWISE1(REFOP, POP) { \
- for (int i=0; i<PacketSize; ++i) \
- ref[i] = REFOP(data1[i]); \
- internal::pstore(data2, POP(internal::pload<Packet>(data1))); \
- VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \
- }
- // Checks component-wise for input of size N. All of data1, data2, and ref
- // should have size at least ceil(N/PacketSize)*PacketSize to avoid memory
- // access errors.
- #define CHECK_CWISE1_N(REFOP, POP, N) { \
- for (int i=0; i<N; ++i) \
- ref[i] = REFOP(data1[i]); \
- for (int j=0; j<N; j+=PacketSize) \
- internal::pstore(data2 + j, POP(internal::pload<Packet>(data1 + j))); \
- VERIFY(test::areApprox(ref, data2, N) && #POP); \
- }
- template<bool Cond,typename Packet>
- struct packet_helper
- {
- template<typename T>
- inline Packet load(const T* from) const { return internal::pload<Packet>(from); }
- template<typename T>
- inline Packet loadu(const T* from) const { return internal::ploadu<Packet>(from); }
- template<typename T>
- inline Packet load(const T* from, unsigned long long umask) const { return internal::ploadu<Packet>(from, umask); }
- template<typename T>
- inline void store(T* to, const Packet& x) const { internal::pstore(to,x); }
- template<typename T>
- inline void store(T* to, const Packet& x, unsigned long long umask) const { internal::pstoreu(to, x, umask); }
- template<typename T>
- inline Packet& forward_reference(Packet& packet, T& /*scalar*/) const { return packet; }
- };
- template<typename Packet>
- struct packet_helper<false,Packet>
- {
- template<typename T>
- inline T load(const T* from) const { return *from; }
- template<typename T>
- inline T loadu(const T* from) const { return *from; }
- template<typename T>
- inline T load(const T* from, unsigned long long) const { return *from; }
- template<typename T>
- inline void store(T* to, const T& x) const { *to = x; }
- template<typename T>
- inline void store(T* to, const T& x, unsigned long long) const { *to = x; }
- template<typename T>
- inline T& forward_reference(Packet& /*packet*/, T& scalar) const { return scalar; }
- };
- #define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \
- test::packet_helper<COND,Packet> h; \
- for (int i=0; i<PacketSize; ++i) \
- ref[i] = Scalar(REFOP(data1[i])); \
- h.store(data2, POP(h.load(data1))); \
- VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \
- }
- #define CHECK_CWISE1_EXACT_IF(COND, REFOP, POP) if(COND) { \
- test::packet_helper<COND,Packet> h; \
- for (int i=0; i<PacketSize; ++i) \
- ref[i] = Scalar(REFOP(data1[i])); \
- h.store(data2, POP(h.load(data1))); \
- VERIFY(test::areEqual(ref, data2, PacketSize) && #POP); \
- }
- #define CHECK_CWISE2_IF(COND, REFOP, POP) if(COND) { \
- test::packet_helper<COND,Packet> h; \
- for (int i=0; i<PacketSize; ++i) \
- ref[i] = Scalar(REFOP(data1[i], data1[i+PacketSize])); \
- h.store(data2, POP(h.load(data1),h.load(data1+PacketSize))); \
- VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \
- }
- // One input, one output by reference.
- #define CHECK_CWISE1_BYREF1_IF(COND, REFOP, POP) if(COND) { \
- test::packet_helper<COND,Packet> h; \
- for (int i=0; i<PacketSize; ++i) \
- ref[i] = Scalar(REFOP(data1[i], ref[i+PacketSize])); \
- Packet pout; \
- Scalar sout; \
- h.store(data2, POP(h.load(data1), h.forward_reference(pout, sout))); \
- h.store(data2+PacketSize, h.forward_reference(pout, sout)); \
- VERIFY(test::areApprox(ref, data2, 2 * PacketSize) && #POP); \
- }
- #define CHECK_CWISE3_IF(COND, REFOP, POP) if (COND) { \
- test::packet_helper<COND, Packet> h; \
- for (int i = 0; i < PacketSize; ++i) \
- ref[i] = Scalar(REFOP(data1[i], data1[i + PacketSize], \
- data1[i + 2 * PacketSize])); \
- h.store(data2, POP(h.load(data1), h.load(data1 + PacketSize), \
- h.load(data1 + 2 * PacketSize))); \
- VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \
- }
- // Specialize the runall struct in your test file by defining run().
- template<
- typename Scalar,
- typename PacketType,
- bool IsComplex = NumTraits<Scalar>::IsComplex,
- bool IsInteger = NumTraits<Scalar>::IsInteger>
- struct runall;
- template<
- typename Scalar,
- typename PacketType = typename internal::packet_traits<Scalar>::type,
- bool Vectorized = internal::packet_traits<Scalar>::Vectorizable,
- bool HasHalf = !internal::is_same<typename internal::unpacket_traits<PacketType>::half,PacketType>::value >
- struct runner;
- template<typename Scalar,typename PacketType>
- struct runner<Scalar,PacketType,true,true>
- {
- static void run() {
- runall<Scalar,PacketType>::run();
- runner<Scalar,typename internal::unpacket_traits<PacketType>::half>::run();
- }
- };
- template<typename Scalar,typename PacketType>
- struct runner<Scalar,PacketType,true,false>
- {
- static void run() {
- runall<Scalar,PacketType>::run();
- }
- };
- template<typename Scalar,typename PacketType>
- struct runner<Scalar,PacketType,false,false>
- {
- static void run() {
- runall<Scalar,PacketType>::run();
- }
- };
- }
- }
|