packetmath_test_shared.h 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275
  1. // This file is part of Eigen, a lightweight C++ template library
  2. // for linear algebra.
  3. //
  4. // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
  5. // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
  6. //
  7. // This Source Code Form is subject to the terms of the Mozilla
  8. // Public License v. 2.0. If a copy of the MPL was not distributed
  9. // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
  10. #include "main.h"
  11. #include <typeinfo>
  12. #if defined __GNUC__ && __GNUC__>=6
  13. #pragma GCC diagnostic ignored "-Wignored-attributes"
  14. #endif
  15. // using namespace Eigen;
  16. bool g_first_pass = true;
  17. namespace Eigen {
  18. namespace internal {
  19. template<typename T> T negate(const T& x) { return -x; }
  20. template<typename T>
  21. Map<const Array<unsigned char,sizeof(T),1> >
  22. bits(const T& x) {
  23. return Map<const Array<unsigned char,sizeof(T),1> >(reinterpret_cast<const unsigned char *>(&x));
  24. }
  25. // The following implement bitwise operations on floating point types
  26. template<typename T,typename Bits,typename Func>
  27. T apply_bit_op(Bits a, Bits b, Func f) {
  28. Array<unsigned char,sizeof(T),1> data;
  29. T res;
  30. for(Index i = 0; i < data.size(); ++i)
  31. data[i] = f(a[i], b[i]);
  32. // Note: The reinterpret_cast works around GCC's class-memaccess warnings:
  33. std::memcpy(reinterpret_cast<unsigned char*>(&res), data.data(), sizeof(T));
  34. return res;
  35. }
  36. #define EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,T) \
  37. template<> T EIGEN_CAT(p,OP)(const T& a,const T& b) { \
  38. return apply_bit_op<T>(bits(a),bits(b),FUNC); \
  39. }
  40. #define EIGEN_TEST_MAKE_BITWISE(OP,FUNC) \
  41. EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,float) \
  42. EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,double) \
  43. EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,half) \
  44. EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,bfloat16) \
  45. EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<float>) \
  46. EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<double>)
  47. EIGEN_TEST_MAKE_BITWISE(xor,std::bit_xor<unsigned char>())
  48. EIGEN_TEST_MAKE_BITWISE(and,std::bit_and<unsigned char>())
  49. EIGEN_TEST_MAKE_BITWISE(or, std::bit_or<unsigned char>())
  50. struct bit_andnot{
  51. template<typename T> T
  52. operator()(T a, T b) const { return a & (~b); }
  53. };
  54. EIGEN_TEST_MAKE_BITWISE(andnot, bit_andnot())
  55. template<typename T>
  56. bool biteq(T a, T b) {
  57. return (bits(a) == bits(b)).all();
  58. }
  59. }
  60. namespace test {
  61. // NOTE: we disable inlining for this function to workaround a GCC issue when using -O3 and the i387 FPU.
  62. template<typename Scalar> EIGEN_DONT_INLINE
  63. bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits<Scalar>::Real& refvalue)
  64. {
  65. return internal::isMuchSmallerThan(a-b, refvalue);
  66. }
  67. template<typename Scalar>
  68. inline void print_mismatch(const Scalar* ref, const Scalar* vec, int size) {
  69. std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(ref,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(vec,size) << "]\n";
  70. }
  71. template<typename Scalar> bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits<Scalar>::Real& refvalue)
  72. {
  73. for (int i=0; i<size; ++i)
  74. {
  75. if (!isApproxAbs(a[i],b[i],refvalue))
  76. {
  77. print_mismatch(a, b, size);
  78. return false;
  79. }
  80. }
  81. return true;
  82. }
  83. template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size)
  84. {
  85. for (int i=0; i<size; ++i)
  86. {
  87. if ( a[i]!=b[i] && !internal::isApprox(a[i],b[i])
  88. && !((numext::isnan)(a[i]) && (numext::isnan)(b[i])) )
  89. {
  90. print_mismatch(a, b, size);
  91. return false;
  92. }
  93. }
  94. return true;
  95. }
  96. template<typename Scalar> bool areEqual(const Scalar* a, const Scalar* b, int size)
  97. {
  98. for (int i=0; i<size; ++i)
  99. {
  100. if ( (a[i] != b[i]) && !((numext::isnan)(a[i]) && (numext::isnan)(b[i])) )
  101. {
  102. print_mismatch(a, b, size);
  103. return false;
  104. }
  105. }
  106. return true;
  107. }
  108. #define CHECK_CWISE1(REFOP, POP) { \
  109. for (int i=0; i<PacketSize; ++i) \
  110. ref[i] = REFOP(data1[i]); \
  111. internal::pstore(data2, POP(internal::pload<Packet>(data1))); \
  112. VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \
  113. }
  114. // Checks component-wise for input of size N. All of data1, data2, and ref
  115. // should have size at least ceil(N/PacketSize)*PacketSize to avoid memory
  116. // access errors.
  117. #define CHECK_CWISE1_N(REFOP, POP, N) { \
  118. for (int i=0; i<N; ++i) \
  119. ref[i] = REFOP(data1[i]); \
  120. for (int j=0; j<N; j+=PacketSize) \
  121. internal::pstore(data2 + j, POP(internal::pload<Packet>(data1 + j))); \
  122. VERIFY(test::areApprox(ref, data2, N) && #POP); \
  123. }
  124. template<bool Cond,typename Packet>
  125. struct packet_helper
  126. {
  127. template<typename T>
  128. inline Packet load(const T* from) const { return internal::pload<Packet>(from); }
  129. template<typename T>
  130. inline Packet loadu(const T* from) const { return internal::ploadu<Packet>(from); }
  131. template<typename T>
  132. inline Packet load(const T* from, unsigned long long umask) const { return internal::ploadu<Packet>(from, umask); }
  133. template<typename T>
  134. inline void store(T* to, const Packet& x) const { internal::pstore(to,x); }
  135. template<typename T>
  136. inline void store(T* to, const Packet& x, unsigned long long umask) const { internal::pstoreu(to, x, umask); }
  137. template<typename T>
  138. inline Packet& forward_reference(Packet& packet, T& /*scalar*/) const { return packet; }
  139. };
  140. template<typename Packet>
  141. struct packet_helper<false,Packet>
  142. {
  143. template<typename T>
  144. inline T load(const T* from) const { return *from; }
  145. template<typename T>
  146. inline T loadu(const T* from) const { return *from; }
  147. template<typename T>
  148. inline T load(const T* from, unsigned long long) const { return *from; }
  149. template<typename T>
  150. inline void store(T* to, const T& x) const { *to = x; }
  151. template<typename T>
  152. inline void store(T* to, const T& x, unsigned long long) const { *to = x; }
  153. template<typename T>
  154. inline T& forward_reference(Packet& /*packet*/, T& scalar) const { return scalar; }
  155. };
  156. #define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \
  157. test::packet_helper<COND,Packet> h; \
  158. for (int i=0; i<PacketSize; ++i) \
  159. ref[i] = Scalar(REFOP(data1[i])); \
  160. h.store(data2, POP(h.load(data1))); \
  161. VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \
  162. }
  163. #define CHECK_CWISE1_EXACT_IF(COND, REFOP, POP) if(COND) { \
  164. test::packet_helper<COND,Packet> h; \
  165. for (int i=0; i<PacketSize; ++i) \
  166. ref[i] = Scalar(REFOP(data1[i])); \
  167. h.store(data2, POP(h.load(data1))); \
  168. VERIFY(test::areEqual(ref, data2, PacketSize) && #POP); \
  169. }
  170. #define CHECK_CWISE2_IF(COND, REFOP, POP) if(COND) { \
  171. test::packet_helper<COND,Packet> h; \
  172. for (int i=0; i<PacketSize; ++i) \
  173. ref[i] = Scalar(REFOP(data1[i], data1[i+PacketSize])); \
  174. h.store(data2, POP(h.load(data1),h.load(data1+PacketSize))); \
  175. VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \
  176. }
  177. // One input, one output by reference.
  178. #define CHECK_CWISE1_BYREF1_IF(COND, REFOP, POP) if(COND) { \
  179. test::packet_helper<COND,Packet> h; \
  180. for (int i=0; i<PacketSize; ++i) \
  181. ref[i] = Scalar(REFOP(data1[i], ref[i+PacketSize])); \
  182. Packet pout; \
  183. Scalar sout; \
  184. h.store(data2, POP(h.load(data1), h.forward_reference(pout, sout))); \
  185. h.store(data2+PacketSize, h.forward_reference(pout, sout)); \
  186. VERIFY(test::areApprox(ref, data2, 2 * PacketSize) && #POP); \
  187. }
  188. #define CHECK_CWISE3_IF(COND, REFOP, POP) if (COND) { \
  189. test::packet_helper<COND, Packet> h; \
  190. for (int i = 0; i < PacketSize; ++i) \
  191. ref[i] = Scalar(REFOP(data1[i], data1[i + PacketSize], \
  192. data1[i + 2 * PacketSize])); \
  193. h.store(data2, POP(h.load(data1), h.load(data1 + PacketSize), \
  194. h.load(data1 + 2 * PacketSize))); \
  195. VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \
  196. }
  197. // Specialize the runall struct in your test file by defining run().
  198. template<
  199. typename Scalar,
  200. typename PacketType,
  201. bool IsComplex = NumTraits<Scalar>::IsComplex,
  202. bool IsInteger = NumTraits<Scalar>::IsInteger>
  203. struct runall;
  204. template<
  205. typename Scalar,
  206. typename PacketType = typename internal::packet_traits<Scalar>::type,
  207. bool Vectorized = internal::packet_traits<Scalar>::Vectorizable,
  208. bool HasHalf = !internal::is_same<typename internal::unpacket_traits<PacketType>::half,PacketType>::value >
  209. struct runner;
  210. template<typename Scalar,typename PacketType>
  211. struct runner<Scalar,PacketType,true,true>
  212. {
  213. static void run() {
  214. runall<Scalar,PacketType>::run();
  215. runner<Scalar,typename internal::unpacket_traits<PacketType>::half>::run();
  216. }
  217. };
  218. template<typename Scalar,typename PacketType>
  219. struct runner<Scalar,PacketType,true,false>
  220. {
  221. static void run() {
  222. runall<Scalar,PacketType>::run();
  223. }
  224. };
  225. template<typename Scalar,typename PacketType>
  226. struct runner<Scalar,PacketType,false,false>
  227. {
  228. static void run() {
  229. runall<Scalar,PacketType>::run();
  230. }
  231. };
  232. }
  233. }