123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2010-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
- // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- template<typename MatrixType>
- bool equalsIdentity(const MatrixType& A)
- {
- typedef typename MatrixType::Scalar Scalar;
- Scalar zero = static_cast<Scalar>(0);
- bool offDiagOK = true;
- for (Index i = 0; i < A.rows(); ++i) {
- for (Index j = i+1; j < A.cols(); ++j) {
- offDiagOK = offDiagOK && (A(i,j) == zero);
- }
- }
- for (Index i = 0; i < A.rows(); ++i) {
- for (Index j = 0; j < (std::min)(i, A.cols()); ++j) {
- offDiagOK = offDiagOK && (A(i,j) == zero);
- }
- }
- bool diagOK = (A.diagonal().array() == 1).all();
- return offDiagOK && diagOK;
- }
- template<typename VectorType>
- void check_extremity_accuracy(const VectorType &v, const typename VectorType::Scalar &low, const typename VectorType::Scalar &high)
- {
- typedef typename VectorType::Scalar Scalar;
- typedef typename VectorType::RealScalar RealScalar;
- RealScalar prec = internal::is_same<RealScalar,float>::value ? NumTraits<RealScalar>::dummy_precision()*10 : NumTraits<RealScalar>::dummy_precision()/10;
- Index size = v.size();
- if(size<20)
- return;
- for (int i=0; i<size; ++i)
- {
- if(i<5 || i>size-6)
- {
- Scalar ref = (low*RealScalar(size-i-1))/RealScalar(size-1) + (high*RealScalar(i))/RealScalar(size-1);
- if(std::abs(ref)>1)
- {
- if(!internal::isApprox(v(i), ref, prec))
- std::cout << v(i) << " != " << ref << " ; relative error: " << std::abs((v(i)-ref)/ref) << " ; required precision: " << prec << " ; range: " << low << "," << high << " ; i: " << i << "\n";
- VERIFY(internal::isApprox(v(i), (low*RealScalar(size-i-1))/RealScalar(size-1) + (high*RealScalar(i))/RealScalar(size-1), prec));
- }
- }
- }
- }
- template<typename VectorType>
- void testVectorType(const VectorType& base)
- {
- typedef typename VectorType::Scalar Scalar;
- typedef typename VectorType::RealScalar RealScalar;
- const Index size = base.size();
-
- Scalar high = internal::random<Scalar>(-500,500);
- Scalar low = (size == 1 ? high : internal::random<Scalar>(-500,500));
- if (numext::real(low)>numext::real(high)) std::swap(low,high);
- // check low==high
- if(internal::random<float>(0.f,1.f)<0.05f)
- low = high;
- // check abs(low) >> abs(high)
- else if(size>2 && std::numeric_limits<RealScalar>::max_exponent10>0 && internal::random<float>(0.f,1.f)<0.1f)
- low = -internal::random<Scalar>(1,2) * RealScalar(std::pow(RealScalar(10),std::numeric_limits<RealScalar>::max_exponent10/2));
- const Scalar step = ((size == 1) ? 1 : (high-low)/RealScalar(size-1));
- // check whether the result yields what we expect it to do
- VectorType m(base);
- m.setLinSpaced(size,low,high);
- if(!NumTraits<Scalar>::IsInteger)
- {
- VectorType n(size);
- for (int i=0; i<size; ++i)
- n(i) = low+RealScalar(i)*step;
- VERIFY_IS_APPROX(m,n);
- CALL_SUBTEST( check_extremity_accuracy(m, low, high) );
- }
- RealScalar range_length = numext::real(high-low);
- if((!NumTraits<Scalar>::IsInteger) || (range_length>=size && (Index(range_length)%(size-1))==0) || (Index(range_length+1)<size && (size%Index(range_length+1))==0))
- {
- VectorType n(size);
- if((!NumTraits<Scalar>::IsInteger) || (range_length>=size))
- for (int i=0; i<size; ++i)
- n(i) = size==1 ? low : (low + ((high-low)*Scalar(i))/RealScalar(size-1));
- else
- for (int i=0; i<size; ++i)
- n(i) = size==1 ? low : low + Scalar((double(range_length+1)*double(i))/double(size));
- VERIFY_IS_APPROX(m,n);
- // random access version
- m = VectorType::LinSpaced(size,low,high);
- VERIFY_IS_APPROX(m,n);
- VERIFY( internal::isApprox(m(m.size()-1),high) );
- VERIFY( size==1 || internal::isApprox(m(0),low) );
- VERIFY_IS_EQUAL(m(m.size()-1) , high);
- if(!NumTraits<Scalar>::IsInteger)
- CALL_SUBTEST( check_extremity_accuracy(m, low, high) );
- }
- VERIFY( numext::real(m(m.size()-1)) <= numext::real(high) );
- VERIFY( (m.array().real() <= numext::real(high)).all() );
- VERIFY( (m.array().real() >= numext::real(low)).all() );
- VERIFY( numext::real(m(m.size()-1)) >= numext::real(low) );
- if(size>=1)
- {
- VERIFY( internal::isApprox(m(0),low) );
- VERIFY_IS_EQUAL(m(0) , low);
- }
- // check whether everything works with row and col major vectors
- Matrix<Scalar,Dynamic,1> row_vector(size);
- Matrix<Scalar,1,Dynamic> col_vector(size);
- row_vector.setLinSpaced(size,low,high);
- col_vector.setLinSpaced(size,low,high);
- // when using the extended precision (e.g., FPU) the relative error might exceed 1 bit
- // when computing the squared sum in isApprox, thus the 2x factor.
- VERIFY( row_vector.isApprox(col_vector.transpose(), RealScalar(2)*NumTraits<Scalar>::epsilon()));
- Matrix<Scalar,Dynamic,1> size_changer(size+50);
- size_changer.setLinSpaced(size,low,high);
- VERIFY( size_changer.size() == size );
- typedef Matrix<Scalar,1,1> ScalarMatrix;
- ScalarMatrix scalar;
- scalar.setLinSpaced(1,low,high);
- VERIFY_IS_APPROX( scalar, ScalarMatrix::Constant(high) );
- VERIFY_IS_APPROX( ScalarMatrix::LinSpaced(1,low,high), ScalarMatrix::Constant(high) );
- // regression test for bug 526 (linear vectorized transversal)
- if (size > 1 && (!NumTraits<Scalar>::IsInteger)) {
- m.tail(size-1).setLinSpaced(low, high);
- VERIFY_IS_APPROX(m(size-1), high);
- }
- // regression test for bug 1383 (LinSpaced with empty size/range)
- {
- Index n0 = VectorType::SizeAtCompileTime==Dynamic ? 0 : VectorType::SizeAtCompileTime;
- low = internal::random<Scalar>();
- m = VectorType::LinSpaced(n0,low,low-RealScalar(1));
- VERIFY(m.size()==n0);
- if(VectorType::SizeAtCompileTime==Dynamic)
- {
- VERIFY_IS_EQUAL(VectorType::LinSpaced(n0,0,Scalar(n0-1)).sum(),Scalar(0));
- VERIFY_IS_EQUAL(VectorType::LinSpaced(n0,low,low-RealScalar(1)).sum(),Scalar(0));
- }
- m.setLinSpaced(n0,0,Scalar(n0-1));
- VERIFY(m.size()==n0);
- m.setLinSpaced(n0,low,low-RealScalar(1));
- VERIFY(m.size()==n0);
- // empty range only:
- VERIFY_IS_APPROX(VectorType::LinSpaced(size,low,low),VectorType::Constant(size,low));
- m.setLinSpaced(size,low,low);
- VERIFY_IS_APPROX(m,VectorType::Constant(size,low));
- if(NumTraits<Scalar>::IsInteger)
- {
- VERIFY_IS_APPROX( VectorType::LinSpaced(size,low,low+Scalar(size-1)), VectorType::LinSpaced(size,low+Scalar(size-1),low).reverse() );
- if(VectorType::SizeAtCompileTime==Dynamic)
- {
- // Check negative multiplicator path:
- for(Index k=1; k<5; ++k)
- VERIFY_IS_APPROX( VectorType::LinSpaced(size,low,low+Scalar((size-1)*k)), VectorType::LinSpaced(size,low+Scalar((size-1)*k),low).reverse() );
- // Check negative divisor path:
- for(Index k=1; k<5; ++k)
- VERIFY_IS_APPROX( VectorType::LinSpaced(size*k,low,low+Scalar(size-1)), VectorType::LinSpaced(size*k,low+Scalar(size-1),low).reverse() );
- }
- }
- }
- // test setUnit()
- if(m.size()>0)
- {
- for(Index k=0; k<10; ++k)
- {
- Index i = internal::random<Index>(0,m.size()-1);
- m.setUnit(i);
- VERIFY_IS_APPROX( m, VectorType::Unit(m.size(), i) );
- }
- if(VectorType::SizeAtCompileTime==Dynamic)
- {
- Index i = internal::random<Index>(0,2*m.size()-1);
- m.setUnit(2*m.size(),i);
- VERIFY_IS_APPROX( m, VectorType::Unit(m.size(),i) );
- }
- }
- }
- template<typename MatrixType>
- void testMatrixType(const MatrixType& m)
- {
- using std::abs;
- const Index rows = m.rows();
- const Index cols = m.cols();
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- Scalar s1;
- do {
- s1 = internal::random<Scalar>();
- } while(abs(s1)<RealScalar(1e-5) && (!NumTraits<Scalar>::IsInteger));
- MatrixType A;
- A.setIdentity(rows, cols);
- VERIFY(equalsIdentity(A));
- VERIFY(equalsIdentity(MatrixType::Identity(rows, cols)));
- A = MatrixType::Constant(rows,cols,s1);
- Index i = internal::random<Index>(0,rows-1);
- Index j = internal::random<Index>(0,cols-1);
- VERIFY_IS_APPROX( MatrixType::Constant(rows,cols,s1)(i,j), s1 );
- VERIFY_IS_APPROX( MatrixType::Constant(rows,cols,s1).coeff(i,j), s1 );
- VERIFY_IS_APPROX( A(i,j), s1 );
- }
- template<int>
- void bug79()
- {
- // Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79).
- VERIFY( (MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1)).norm() < std::numeric_limits<double>::epsilon() );
- }
- template<int>
- void bug1630()
- {
- Array4d x4 = Array4d::LinSpaced(0.0, 1.0);
- Array3d x3(Array4d::LinSpaced(0.0, 1.0).head(3));
- VERIFY_IS_APPROX(x4.head(3), x3);
- }
- template<int>
- void nullary_overflow()
- {
- // Check possible overflow issue
- int n = 60000;
- ArrayXi a1(n), a2(n);
- a1.setLinSpaced(n, 0, n-1);
- for(int i=0; i<n; ++i)
- a2(i) = i;
- VERIFY_IS_APPROX(a1,a2);
- }
- template<int>
- void nullary_internal_logic()
- {
- // check some internal logic
- VERIFY(( internal::has_nullary_operator<internal::scalar_constant_op<double> >::value ));
- VERIFY(( !internal::has_unary_operator<internal::scalar_constant_op<double> >::value ));
- VERIFY(( !internal::has_binary_operator<internal::scalar_constant_op<double> >::value ));
- VERIFY(( internal::functor_has_linear_access<internal::scalar_constant_op<double> >::ret ));
- VERIFY(( !internal::has_nullary_operator<internal::scalar_identity_op<double> >::value ));
- VERIFY(( !internal::has_unary_operator<internal::scalar_identity_op<double> >::value ));
- VERIFY(( internal::has_binary_operator<internal::scalar_identity_op<double> >::value ));
- VERIFY(( !internal::functor_has_linear_access<internal::scalar_identity_op<double> >::ret ));
- VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<float> >::value ));
- VERIFY(( internal::has_unary_operator<internal::linspaced_op<float> >::value ));
- VERIFY(( !internal::has_binary_operator<internal::linspaced_op<float> >::value ));
- VERIFY(( internal::functor_has_linear_access<internal::linspaced_op<float> >::ret ));
- // Regression unit test for a weird MSVC bug.
- // Search "nullary_wrapper_workaround_msvc" in CoreEvaluators.h for the details.
- // See also traits<Ref>::match.
- {
- MatrixXf A = MatrixXf::Random(3,3);
- Ref<const MatrixXf> R = 2.0*A;
- VERIFY_IS_APPROX(R, A+A);
- Ref<const MatrixXf> R1 = MatrixXf::Random(3,3)+A;
- VectorXi V = VectorXi::Random(3);
- Ref<const VectorXi> R2 = VectorXi::LinSpaced(3,1,3)+V;
- VERIFY_IS_APPROX(R2, V+Vector3i(1,2,3));
- VERIFY(( internal::has_nullary_operator<internal::scalar_constant_op<float> >::value ));
- VERIFY(( !internal::has_unary_operator<internal::scalar_constant_op<float> >::value ));
- VERIFY(( !internal::has_binary_operator<internal::scalar_constant_op<float> >::value ));
- VERIFY(( internal::functor_has_linear_access<internal::scalar_constant_op<float> >::ret ));
- VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<int> >::value ));
- VERIFY(( internal::has_unary_operator<internal::linspaced_op<int> >::value ));
- VERIFY(( !internal::has_binary_operator<internal::linspaced_op<int> >::value ));
- VERIFY(( internal::functor_has_linear_access<internal::linspaced_op<int> >::ret ));
- }
- }
- EIGEN_DECLARE_TEST(nullary)
- {
- CALL_SUBTEST_1( testMatrixType(Matrix2d()) );
- CALL_SUBTEST_2( testMatrixType(MatrixXcf(internal::random<int>(1,300),internal::random<int>(1,300))) );
- CALL_SUBTEST_3( testMatrixType(MatrixXf(internal::random<int>(1,300),internal::random<int>(1,300))) );
-
- for(int i = 0; i < g_repeat*10; i++) {
- CALL_SUBTEST_3( testVectorType(VectorXcd(internal::random<int>(1,30000))) );
- CALL_SUBTEST_4( testVectorType(VectorXd(internal::random<int>(1,30000))) );
- CALL_SUBTEST_5( testVectorType(Vector4d()) ); // regression test for bug 232
- CALL_SUBTEST_6( testVectorType(Vector3d()) );
- CALL_SUBTEST_7( testVectorType(VectorXf(internal::random<int>(1,30000))) );
- CALL_SUBTEST_8( testVectorType(Vector3f()) );
- CALL_SUBTEST_8( testVectorType(Vector4f()) );
- CALL_SUBTEST_8( testVectorType(Matrix<float,8,1>()) );
- CALL_SUBTEST_8( testVectorType(Matrix<float,1,1>()) );
- CALL_SUBTEST_9( testVectorType(VectorXi(internal::random<int>(1,10))) );
- CALL_SUBTEST_9( testVectorType(VectorXi(internal::random<int>(9,300))) );
- CALL_SUBTEST_9( testVectorType(Matrix<int,1,1>()) );
- }
- CALL_SUBTEST_6( bug79<0>() );
- CALL_SUBTEST_6( bug1630<0>() );
- CALL_SUBTEST_9( nullary_overflow<0>() );
- CALL_SUBTEST_10( nullary_internal_logic<0>() );
- }
|