123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
- // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- // discard stack allocation as that too bypasses malloc
- #define EIGEN_STACK_ALLOCATION_LIMIT 0
- // heap allocation will raise an assert if enabled at runtime
- #define EIGEN_RUNTIME_NO_MALLOC
- #include "main.h"
- #include <Eigen/Cholesky>
- #include <Eigen/Eigenvalues>
- #include <Eigen/LU>
- #include <Eigen/QR>
- #include <Eigen/SVD>
- template<typename MatrixType> void nomalloc(const MatrixType& m)
- {
- /* this test check no dynamic memory allocation are issued with fixed-size matrices
- */
- typedef typename MatrixType::Scalar Scalar;
- Index rows = m.rows();
- Index cols = m.cols();
- MatrixType m1 = MatrixType::Random(rows, cols),
- m2 = MatrixType::Random(rows, cols),
- m3(rows, cols);
- Scalar s1 = internal::random<Scalar>();
- Index r = internal::random<Index>(0, rows-1),
- c = internal::random<Index>(0, cols-1);
- VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2);
- VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
- VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix());
- VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
-
- m2.col(0).noalias() = m1 * m1.col(0);
- m2.col(0).noalias() -= m1.adjoint() * m1.col(0);
- m2.col(0).noalias() -= m1 * m1.row(0).adjoint();
- m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint();
- m2.row(0).noalias() = m1.row(0) * m1;
- m2.row(0).noalias() -= m1.row(0) * m1.adjoint();
- m2.row(0).noalias() -= m1.col(0).adjoint() * m1;
- m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint();
- VERIFY_IS_APPROX(m2,m2);
-
- m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0);
- m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0);
- m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint();
- m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint();
- m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>();
- m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>();
- m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>();
- m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>();
- VERIFY_IS_APPROX(m2,m2);
-
- m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0);
- m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0);
- m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint();
- m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint();
- m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>();
- m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>();
- m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>();
- m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>();
- VERIFY_IS_APPROX(m2,m2);
-
- m2.template selfadjointView<Lower>().rankUpdate(m1.col(0),-1);
- m2.template selfadjointView<Upper>().rankUpdate(m1.row(0),-1);
- m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), m1.col(0)); // rank-2
- // The following fancy matrix-matrix products are not safe yet regarding static allocation
- m2.template selfadjointView<Lower>().rankUpdate(m1);
- m2 += m2.template triangularView<Upper>() * m1;
- m2.template triangularView<Upper>() = m2 * m2;
- m1 += m1.template selfadjointView<Lower>() * m2;
- VERIFY_IS_APPROX(m2,m2);
- }
- template<typename Scalar>
- void ctms_decompositions()
- {
- const int maxSize = 16;
- const int size = 12;
- typedef Eigen::Matrix<Scalar,
- Eigen::Dynamic, Eigen::Dynamic,
- 0,
- maxSize, maxSize> Matrix;
- typedef Eigen::Matrix<Scalar,
- Eigen::Dynamic, 1,
- 0,
- maxSize, 1> Vector;
- typedef Eigen::Matrix<std::complex<Scalar>,
- Eigen::Dynamic, Eigen::Dynamic,
- 0,
- maxSize, maxSize> ComplexMatrix;
- const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size));
- Matrix X(size,size);
- const ComplexMatrix complexA(ComplexMatrix::Random(size, size));
- const Matrix saA = A.adjoint() * A;
- const Vector b(Vector::Random(size));
- Vector x(size);
- // Cholesky module
- Eigen::LLT<Matrix> LLT; LLT.compute(A);
- X = LLT.solve(B);
- x = LLT.solve(b);
- Eigen::LDLT<Matrix> LDLT; LDLT.compute(A);
- X = LDLT.solve(B);
- x = LDLT.solve(b);
- // Eigenvalues module
- Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp; hessDecomp.compute(complexA);
- Eigen::ComplexSchur<ComplexMatrix> cSchur(size); cSchur.compute(complexA);
- Eigen::ComplexEigenSolver<ComplexMatrix> cEigSolver; cEigSolver.compute(complexA);
- Eigen::EigenSolver<Matrix> eigSolver; eigSolver.compute(A);
- Eigen::SelfAdjointEigenSolver<Matrix> saEigSolver(size); saEigSolver.compute(saA);
- Eigen::Tridiagonalization<Matrix> tridiag; tridiag.compute(saA);
- // LU module
- Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A);
- X = ppLU.solve(B);
- x = ppLU.solve(b);
- Eigen::FullPivLU<Matrix> fpLU; fpLU.compute(A);
- X = fpLU.solve(B);
- x = fpLU.solve(b);
- // QR module
- Eigen::HouseholderQR<Matrix> hQR; hQR.compute(A);
- X = hQR.solve(B);
- x = hQR.solve(b);
- Eigen::ColPivHouseholderQR<Matrix> cpQR; cpQR.compute(A);
- X = cpQR.solve(B);
- x = cpQR.solve(b);
- Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A);
- // FIXME X = fpQR.solve(B);
- x = fpQR.solve(b);
- // SVD module
- Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A, ComputeFullU | ComputeFullV);
- }
- void test_zerosized() {
- // default constructors:
- Eigen::MatrixXd A;
- Eigen::VectorXd v;
- // explicit zero-sized:
- Eigen::ArrayXXd A0(0,0);
- Eigen::ArrayXd v0(0);
- // assigning empty objects to each other:
- A=A0;
- v=v0;
- }
- template<typename MatrixType> void test_reference(const MatrixType& m) {
- typedef typename MatrixType::Scalar Scalar;
- enum { Flag = MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor};
- enum { TransposeFlag = !MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor};
- Index rows = m.rows(), cols=m.cols();
- typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Flag > MatrixX;
- typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, TransposeFlag> MatrixXT;
- // Dynamic reference:
- typedef Eigen::Ref<const MatrixX > Ref;
- typedef Eigen::Ref<const MatrixXT > RefT;
- Ref r1(m);
- Ref r2(m.block(rows/3, cols/4, rows/2, cols/2));
- RefT r3(m.transpose());
- RefT r4(m.topLeftCorner(rows/2, cols/2).transpose());
- VERIFY_RAISES_ASSERT(RefT r5(m));
- VERIFY_RAISES_ASSERT(Ref r6(m.transpose()));
- VERIFY_RAISES_ASSERT(Ref r7(Scalar(2) * m));
- // Copy constructors shall also never malloc
- Ref r8 = r1;
- RefT r9 = r3;
- // Initializing from a compatible Ref shall also never malloc
- Eigen::Ref<const MatrixX, Unaligned, Stride<Dynamic, Dynamic> > r10=r8, r11=m;
- // Initializing from an incompatible Ref will malloc:
- typedef Eigen::Ref<const MatrixX, Aligned> RefAligned;
- VERIFY_RAISES_ASSERT(RefAligned r12=r10);
- VERIFY_RAISES_ASSERT(Ref r13=r10); // r10 has more dynamic strides
- }
- EIGEN_DECLARE_TEST(nomalloc)
- {
- // create some dynamic objects
- Eigen::MatrixXd M1 = MatrixXd::Random(3,3);
- Ref<const MatrixXd> R1 = 2.0*M1; // Ref requires temporary
- // from here on prohibit malloc:
- Eigen::internal::set_is_malloc_allowed(false);
- // check that our operator new is indeed called:
- VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3,3)));
- CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()) );
- CALL_SUBTEST_2(nomalloc(Matrix4d()) );
- CALL_SUBTEST_3(nomalloc(Matrix<float,32,32>()) );
-
- // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms)
- CALL_SUBTEST_4(ctms_decompositions<float>());
- CALL_SUBTEST_5(test_zerosized());
- CALL_SUBTEST_6(test_reference(Matrix<float,32,32>()));
- CALL_SUBTEST_7(test_reference(R1));
- CALL_SUBTEST_8(Ref<MatrixXd> R2 = M1.topRows<2>(); test_reference(R2));
- }
|