123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <Eigen/LU>
- #include "solverbase.h"
- using namespace std;
- template<typename MatrixType>
- typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) {
- return m.cwiseAbs().colwise().sum().maxCoeff();
- }
- template<typename MatrixType> void lu_non_invertible()
- {
- STATIC_CHECK(( internal::is_same<typename FullPivLU<MatrixType>::StorageIndex,int>::value ));
- typedef typename MatrixType::RealScalar RealScalar;
- /* this test covers the following files:
- LU.h
- */
- Index rows, cols, cols2;
- if(MatrixType::RowsAtCompileTime==Dynamic)
- {
- rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
- }
- else
- {
- rows = MatrixType::RowsAtCompileTime;
- }
- if(MatrixType::ColsAtCompileTime==Dynamic)
- {
- cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
- cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE);
- }
- else
- {
- cols2 = cols = MatrixType::ColsAtCompileTime;
- }
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime
- };
- typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType;
- typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType;
- typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime>
- CMatrixType;
- typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime>
- RMatrixType;
- Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
- // The image of the zero matrix should consist of a single (zero) column vector
- VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1));
- // The kernel of the zero matrix is the entire space, and thus is an invertible matrix of dimensions cols.
- KernelMatrixType kernel = MatrixType::Zero(rows,cols).fullPivLu().kernel();
- VERIFY((kernel.fullPivLu().isInvertible()));
- MatrixType m1(rows, cols), m3(rows, cols2);
- CMatrixType m2(cols, cols2);
- createRandomPIMatrixOfRank(rank, rows, cols, m1);
- FullPivLU<MatrixType> lu;
- // The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank
- // of singular values are either 0 or 1.
- // So it's not clear at all that the epsilon should play any role there.
- lu.setThreshold(RealScalar(0.01));
- lu.compute(m1);
- MatrixType u(rows,cols);
- u = lu.matrixLU().template triangularView<Upper>();
- RMatrixType l = RMatrixType::Identity(rows,rows);
- l.block(0,0,rows,(std::min)(rows,cols)).template triangularView<StrictlyLower>()
- = lu.matrixLU().block(0,0,rows,(std::min)(rows,cols));
- VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u);
- KernelMatrixType m1kernel = lu.kernel();
- ImageMatrixType m1image = lu.image(m1);
- VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
- VERIFY(rank == lu.rank());
- VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
- VERIFY(!lu.isInjective());
- VERIFY(!lu.isInvertible());
- VERIFY(!lu.isSurjective());
- VERIFY_IS_MUCH_SMALLER_THAN((m1 * m1kernel), m1);
- VERIFY(m1image.fullPivLu().rank() == rank);
- VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image);
- check_solverbase<CMatrixType, MatrixType>(m1, lu, rows, cols, cols2);
- m2 = CMatrixType::Random(cols,cols2);
- m3 = m1*m2;
- m2 = CMatrixType::Random(cols,cols2);
- // test that the code, which does resize(), may be applied to an xpr
- m2.block(0,0,m2.rows(),m2.cols()) = lu.solve(m3);
- VERIFY_IS_APPROX(m3, m1*m2);
- }
- template<typename MatrixType> void lu_invertible()
- {
- /* this test covers the following files:
- FullPivLU.h
- */
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- Index size = MatrixType::RowsAtCompileTime;
- if( size==Dynamic)
- size = internal::random<Index>(1,EIGEN_TEST_MAX_SIZE);
- MatrixType m1(size, size), m2(size, size), m3(size, size);
- FullPivLU<MatrixType> lu;
- lu.setThreshold(RealScalar(0.01));
- do {
- m1 = MatrixType::Random(size,size);
- lu.compute(m1);
- } while(!lu.isInvertible());
- VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
- VERIFY(0 == lu.dimensionOfKernel());
- VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector
- VERIFY(size == lu.rank());
- VERIFY(lu.isInjective());
- VERIFY(lu.isSurjective());
- VERIFY(lu.isInvertible());
- VERIFY(lu.image(m1).fullPivLu().isInvertible());
- check_solverbase<MatrixType, MatrixType>(m1, lu, size, size, size);
- MatrixType m1_inverse = lu.inverse();
- m3 = MatrixType::Random(size,size);
- m2 = lu.solve(m3);
- VERIFY_IS_APPROX(m2, m1_inverse*m3);
- RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
- const RealScalar rcond_est = lu.rcond();
- // Verify that the estimated condition number is within a factor of 10 of the
- // truth.
- VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
- // Regression test for Bug 302
- MatrixType m4 = MatrixType::Random(size,size);
- VERIFY_IS_APPROX(lu.solve(m3*m4), lu.solve(m3)*m4);
- }
- template<typename MatrixType> void lu_partial_piv(Index size = MatrixType::ColsAtCompileTime)
- {
- /* this test covers the following files:
- PartialPivLU.h
- */
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- MatrixType m1(size, size), m2(size, size), m3(size, size);
- m1.setRandom();
- PartialPivLU<MatrixType> plu(m1);
- STATIC_CHECK(( internal::is_same<typename PartialPivLU<MatrixType>::StorageIndex,int>::value ));
- VERIFY_IS_APPROX(m1, plu.reconstructedMatrix());
- check_solverbase<MatrixType, MatrixType>(m1, plu, size, size, size);
- MatrixType m1_inverse = plu.inverse();
- m3 = MatrixType::Random(size,size);
- m2 = plu.solve(m3);
- VERIFY_IS_APPROX(m2, m1_inverse*m3);
- RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
- const RealScalar rcond_est = plu.rcond();
- // Verify that the estimate is within a factor of 10 of the truth.
- VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
- }
- template<typename MatrixType> void lu_verify_assert()
- {
- MatrixType tmp;
- FullPivLU<MatrixType> lu;
- VERIFY_RAISES_ASSERT(lu.matrixLU())
- VERIFY_RAISES_ASSERT(lu.permutationP())
- VERIFY_RAISES_ASSERT(lu.permutationQ())
- VERIFY_RAISES_ASSERT(lu.kernel())
- VERIFY_RAISES_ASSERT(lu.image(tmp))
- VERIFY_RAISES_ASSERT(lu.solve(tmp))
- VERIFY_RAISES_ASSERT(lu.transpose().solve(tmp))
- VERIFY_RAISES_ASSERT(lu.adjoint().solve(tmp))
- VERIFY_RAISES_ASSERT(lu.determinant())
- VERIFY_RAISES_ASSERT(lu.rank())
- VERIFY_RAISES_ASSERT(lu.dimensionOfKernel())
- VERIFY_RAISES_ASSERT(lu.isInjective())
- VERIFY_RAISES_ASSERT(lu.isSurjective())
- VERIFY_RAISES_ASSERT(lu.isInvertible())
- VERIFY_RAISES_ASSERT(lu.inverse())
- PartialPivLU<MatrixType> plu;
- VERIFY_RAISES_ASSERT(plu.matrixLU())
- VERIFY_RAISES_ASSERT(plu.permutationP())
- VERIFY_RAISES_ASSERT(plu.solve(tmp))
- VERIFY_RAISES_ASSERT(plu.transpose().solve(tmp))
- VERIFY_RAISES_ASSERT(plu.adjoint().solve(tmp))
- VERIFY_RAISES_ASSERT(plu.determinant())
- VERIFY_RAISES_ASSERT(plu.inverse())
- }
- EIGEN_DECLARE_TEST(lu)
- {
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( lu_non_invertible<Matrix3f>() );
- CALL_SUBTEST_1( lu_invertible<Matrix3f>() );
- CALL_SUBTEST_1( lu_verify_assert<Matrix3f>() );
- CALL_SUBTEST_1( lu_partial_piv<Matrix3f>() );
- CALL_SUBTEST_2( (lu_non_invertible<Matrix<double, 4, 6> >()) );
- CALL_SUBTEST_2( (lu_verify_assert<Matrix<double, 4, 6> >()) );
- CALL_SUBTEST_2( lu_partial_piv<Matrix2d>() );
- CALL_SUBTEST_2( lu_partial_piv<Matrix4d>() );
- CALL_SUBTEST_2( (lu_partial_piv<Matrix<double,6,6> >()) );
- CALL_SUBTEST_3( lu_non_invertible<MatrixXf>() );
- CALL_SUBTEST_3( lu_invertible<MatrixXf>() );
- CALL_SUBTEST_3( lu_verify_assert<MatrixXf>() );
- CALL_SUBTEST_4( lu_non_invertible<MatrixXd>() );
- CALL_SUBTEST_4( lu_invertible<MatrixXd>() );
- CALL_SUBTEST_4( lu_partial_piv<MatrixXd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) );
- CALL_SUBTEST_4( lu_verify_assert<MatrixXd>() );
- CALL_SUBTEST_5( lu_non_invertible<MatrixXcf>() );
- CALL_SUBTEST_5( lu_invertible<MatrixXcf>() );
- CALL_SUBTEST_5( lu_verify_assert<MatrixXcf>() );
- CALL_SUBTEST_6( lu_non_invertible<MatrixXcd>() );
- CALL_SUBTEST_6( lu_invertible<MatrixXcd>() );
- CALL_SUBTEST_6( lu_partial_piv<MatrixXcd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) );
- CALL_SUBTEST_6( lu_verify_assert<MatrixXcd>() );
- CALL_SUBTEST_7(( lu_non_invertible<Matrix<float,Dynamic,16> >() ));
- // Test problem size constructors
- CALL_SUBTEST_9( PartialPivLU<MatrixXf>(10) );
- CALL_SUBTEST_9( FullPivLU<MatrixXf>(10, 20); );
- }
- }
|